×

Long-time existence for semi-linear beam equations on irrational tori. (English) Zbl 1482.35201

The semi-linear beam equation on the \(d\) dimensional irrational torus with smooth nonlinearity of order \(n-1\) with \(n \ge 3\) and \(d \ge 2\) has been studied and the lifespan of solutions is obtained for some small initial datum, which improves the time given by the local existence theory. The result is obtained by combining a Birkhoff normal form step and a modified energy step.

MSC:

35Q53 KdV equations (Korteweg-de Vries equations)
37K55 Perturbations, KAM theory for infinite-dimensional Hamiltonian and Lagrangian systems
35A01 Existence problems for PDEs: global existence, local existence, non-existence

References:

[1] Bambusi, D., Birkhoff normal form for some nonlinear PDEs, Commun. Math. Phys., 234, 253-283 (2003) · Zbl 1032.37051 · doi:10.1007/s00220-002-0774-4
[2] Bambusi, D.; Grébert, B., Birkhoff normal form for partial differential equations with tame modulus, Duke Math. J., 135, 3, 507-567 (2006) · Zbl 1110.37057 · doi:10.1215/S0012-7094-06-13534-2
[3] Bambusi, D.; Delort, JM; Grébert, B.; Szeftel, J., Almost global existence for Hamiltonian semi-linear Klein-Gordon equations with small Cauchy data on Zoll manifolds, Commun. Pure Appl. Math., 60, 1665-1690 (2007) · Zbl 1170.35481 · doi:10.1002/cpa.20181
[4] Bambusi, D., Grébert, B., Maspero, A., Robert, D.: Growth of Sobolev norms for abstract linear Schrödinger equations. To appear in JEMS, (2020) · Zbl 1460.35307
[5] Bernier, J., Bounds on the growth of high discrete Sobolev norms for the cubic discrete nonlinear Schrödinger equations on \(h{\mathbb{Z}} \), Discret. Contin. Dyn. Syst. A, 39, 6, 3179-3195 (2019) · Zbl 1433.35355 · doi:10.3934/dcds.2019131
[6] Bernier, J.; Faou, E.; Grébert, B., Long time behavior of the solutions of NLW on the \(d\)-dimensional torus, Forum Math. Sigma, 8, 12 (2020) · Zbl 1441.35169 · doi:10.1017/fms.2020.8
[7] Berti, M., Delort, J.M.: Almost global solutions of capillary-gravity water waves equations on the circle. In: UMI Lecture Notes (2017) · Zbl 1409.35002
[8] Berti, M., Feola, R., Pusateri, F.: Birkhoff normal form and long time existence for periodic gravity water waves (2018). Preprint at arXiv:1810.11549
[9] Berti, M.; Feola, R.; Franzoi, L., Quadratic life span of periodic gravity-capillary water waves, Water Waves (2020) · Zbl 1502.35103 · doi:10.1007/s42286-020-00036-8
[10] Berti, M.; Feola, R.; Pusateri, F., Birkhoff normal form for gravity water waves, Water Waves (2020) · Zbl 1477.35156 · doi:10.1007/s42286-020-00024-y
[11] Bourgain, J., Construction of approximative and almost periodic solutions of perturbed linear Schrödinger and wave equations, Geom. Funct. Anal., 6, 2, 201-230 (1996) · Zbl 0872.35007 · doi:10.1007/BF02247885
[12] Bourgain, J., Growth of Sobolev norms in linear Schrödinger equations with quasi-periodic potential, Commun. Math. Phys., 204, 1, 207-247 (1999) · Zbl 0938.35150 · doi:10.1007/s002200050644
[13] Delort, JM, On long time existence for small solutions of semi-linear Klein-Gordon equations on the torus, J. d’Analyse Mathèmatique, 107, 161-194 (2009) · Zbl 1184.35211 · doi:10.1007/s11854-009-0007-2
[14] Delort, JM, Growth of Sobolev norms of solutions of linear Schrödinger equations on some compact manifolds, Int. Math. Res. Not., 12, 2305-2328 (2010) · Zbl 1229.35040
[15] Delort, JM, Quasi-linear perturbations of Hamiltonian Klein-Gordon equations on spheres, Am. Math. Soc. (2015) · Zbl 1315.35003 · doi:10.1090/memo/1103
[16] Delort, JM; Imekraz, R., Long time existence for the semi-linear Klein-Gordon equation on a compact boundaryless Riemannian manifold, Commun. PDE, 42, 388-416 (2017) · Zbl 1365.37056 · doi:10.1080/03605302.2017.1278772
[17] Eliasson, H.: Perturbations of linear quasi-periodic systems. In: Dynamical Systems and Small Divisors (Cetraro, Italy, 1998). Lect. Notes Math., vol. 1784, pp. 1-60. Springer, Berlin (2002) · Zbl 1200.47046
[18] Fang, D.; Zhang, Q., Long-time existence for semi-linear Klein-Gordon equations on tori, J. Differ. Equ., 249, 151-179 (2010) · Zbl 1200.35189 · doi:10.1016/j.jde.2010.03.025
[19] Faou, E., Grébert, B.: A Nekhoroshev-type theorem for the nonlinear Schrödinger equation on the torus. Anal. PDE 6(6) (2013) · Zbl 1284.35067
[20] Feola, R., Grébert, B., Iandoli, F.: Long time solutions for quasi-linear Hamiltonian perturbations of Schrödinger and Klein-Gordon equations on tori. Preprint. arXiv:2009.07553 (2020)
[21] Feola, R., Iandoli, F.: A non-linear Egorov theorem and Poincaré-Birkhoff normal forms for quasi-linear pdes on the circle. Preprint. arXiv:2002.12448 (2020) · Zbl 1430.35207
[22] Feola, R., Iandoli, F.: Long time existence for fully nonlinear NLS with small Cauchy data on the circle. Annali della Scuola Normale Superiore di Pisa (Classe di Scienze). To appear (2019). doi:10.2422/2036-2145.201811-003 · Zbl 1475.37081
[23] Grébert, B., Birkhoff normal form and Hamiltonian PDEs, Séminaires et Congrès, 15, 3067-3102 (2016)
[24] Grébert, B.; Imekraz, R.; Paturel, E., Normal forms for semilinear quantum harmonic oscillators, Commun. Math. Phys, 291, 763-798 (2009) · Zbl 1185.81073 · doi:10.1007/s00220-009-0800-x
[25] Imekraz, R., Long time existence for the semi-linear beam equation on irrational tori of dimension two, Nonlinearity, 29, 1-46 (2007)
[26] Ionescu, AD; Pusateri, F., Long-time existence for multi-dimensional periodic water waves, Geom. Funct. Anal., 29, 811-870 (2019) · Zbl 1420.35243 · doi:10.1007/s00039-019-00490-8
[27] Moser, J.: A rapidly convergent iteration method and non-linear partial differential equations—I. Ann. Sc. Norm. Sup. Pisa Cl. Sci. III Ser. 20(2), 265-315 (1966) · Zbl 0144.18202
[28] Pausader, B., Scattering and the Levandosky-Strauss conjecture for fourth-order nonlinear wave equations, J. Differ. Equ., 241, 2, 237-278 (2007) · Zbl 1145.35090 · doi:10.1016/j.jde.2007.06.001
[29] Zhang, Q., Long-time existence for semi-linear Klein-Gordon equations with quadratic potential, Commun. Partial Differ. Equ., 35, 4, 630-668 (2010) · Zbl 1201.35145 · doi:10.1080/03605300903509112
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.