×

A state-based peridynamic formulation for functionally graded Kirchhoff plates. (English) Zbl 07357415

Summary: Functionally graded materials are a potential alternative to traditional fibre-reinforced composite materials as they have continuously varying material properties which do not cause stress concentrations. In this study, a state-based peridynamic model is presented for functionally graded Kirchhoff plates. Equations of motion of the new formulation are obtained using the Euler-Lagrange equation and Taylor’s expansion. The formulation is verified by considering several benchmark problems including a clamped plate subjected to transverse loading and a simply supported plate subjected to transverse loading and inclined loading. The material properties are chosen such that Young’s modulus is assumed to be varied linearly through the thickness direction and Poisson’s ratio is constant. Peridynamic results are compared against finite element analysis results, and a very good agreement is obtained between the two approaches.

MSC:

74-XX Mechanics of deformable solids

Software:

MUL2

References:

[1] Vel, SS, Batra, RC. Three-dimensional exact solution for the vibration of functionally graded rectangular plates. J Sound Vibr 2004; 272(3-5): 703-730. · doi:10.1016/S0022-460X(03)00412-7
[2] Zenkour, AM. Generalized shear deformation theory for bending analysis of functionally graded plates. Appl Math Model 2006; 30(1): 67-84. · Zbl 1163.74529 · doi:10.1016/j.apm.2005.03.009
[3] Shen, HS. Nonlinear bending response of functionally graded plates subjected to transverse loads and in thermal environments. Int J Mech Sci 2002; 44(3): 561-584. · Zbl 1022.74023 · doi:10.1016/S0020-7403(01)00103-5
[4] Bian, ZG, Chen, WQ, Lim, CW, et al. Analytical solutions for single-and multi-span functionally graded plates in cylindrical bending. Int J Solid Struct 2005; 42(24-25): 6433-6456. · Zbl 1119.74468 · doi:10.1016/j.ijsolstr.2005.04.032
[5] Carrera, E, Brischetto, S, Cinefra, M, et al. Effects of thickness stretching in functionally graded plates and shells. Compos B Eng 2011; 42(2): 123-133. · doi:10.1016/j.compositesb.2010.10.005
[6] Silling, SA. Reformulation of elasticity theory for discontinuities and long-range forces. J Mech Phys Solid 2000; 48(1): 175-209. · Zbl 0970.74030 · doi:10.1016/S0022-5096(99)00029-0
[7] Oterkus, E, Barut, A, Madenci, E. Damage growth prediction from loaded composite fastener holes by using peridynamic theory. In: 51st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference 18th AIAA/ASME/AHS Adaptive Structures Conference 12th, 2010, 3026. · doi:10.2514/6.2010-3026
[8] De Meo, D, Zhu, N, Oterkus, E. Peridynamic modeling of granular fracture in polycrystalline materials. J Eng Mater Technol 2016; 138(4): 041008. · doi:10.1115/1.4033634
[9] Oterkus, E, Madenci, E. Peridynamics for failure prediction in composites. In: 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference 20th AIAA/ASME/AHS Adaptive Structures Conference 14th AIAA, 2012, 1692. · doi:10.2514/6.2012-1692
[10] Ozdemir, M, Kefal, A, Imachi, M, et al. Dynamic fracture analysis of functionally graded materials using ordinary state-based peridynamics. Compos Struct 2020; 112296. · doi:10.1016/j.compstruct.2020.112296
[11] Wang, H, Oterkus, E, Oterkus, S. Predicting fracture evolution during lithiation process using peridynamics. Eng Fract Mech 2018; 192: 176-191. · doi:10.1016/j.engfracmech.2018.02.009
[12] De Meo, D, Oterkus, E. Finite element implementation of a peridynamic pitting corrosion damage model. Ocean Eng 2017; 135: 76-83. · doi:10.1016/j.oceaneng.2017.03.002
[13] Wang, H, Oterkus, E, Celik, S, et al. Thermomechanical analysis of porous solid oxide fuel cell by using peridynamics. AIMS Energ 2017; 5(4): 585-600. · doi:10.3934/energy.2017.4.585
[14] Wang, H, Oterkus, E, Oterkus, S. Three-dimensional peridynamic model for predicting fracture evolution during the lithiation process. Energies 2018; 11(6): 1461. · doi:10.3390/en11061461
[15] Gao, Y, Oterkus, S. Fully coupled thermomechanical analysis of laminated composites by using ordinary state based peridynamic theory. Compos Struct 2019; 207: 397-424. · doi:10.1016/j.compstruct.2018.09.034
[16] O’Grady, J, Foster, J. Peridynamic beams: A non-ordinary, state-based model. Int J Solid Struct 2014; 51(18): 3177-3183. · doi:10.1016/j.ijsolstr.2014.05.014
[17] Yang, Z, Oterkus, E, Nguyen, CT, et al. Implementation of peridynamic beam and plate formulations in finite element framework. Continuum Mech Therm 2019; 31(1): 301-315. · doi:10.1007/s00161-018-0684-0
[18] Diyaroglu, C, Oterkus, E, Oterkus, S, et al. Peridynamics for bending of beams and plates with transverse shear deformation. Int J Solid Struct 2015; 69: 152-168. · doi:10.1016/j.ijsolstr.2015.04.040
[19] O’Grady, J, Foster, J. Peridynamic plates and flat shells: A non-ordinary, state-based model. Int J Solid Struct 2014; 51(25-26): 4572-4579. · doi:10.1016/j.ijsolstr.2014.09.003
[20] Taylor, M, Steigmann, DJ. A two-dimensional peridynamic model for thin plates. Math Mech Solid 2015; 20(8): 998-1010. · Zbl 1330.74111
[21] Chowdhury, SR, Roy, P, Roy, D, et al. A peridynamic theory for linear elastic shells. Int J Solid Struct 2016; 84: 110-132. · doi:10.1016/j.ijsolstr.2016.01.019
[22] Madenci, E, Oterkus, E. Peridynamic Theory and Its Applications. New York: Springer, 2014. · Zbl 1295.74001 · doi:10.1007/978-1-4614-8465-3
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.