×

Maximum likelihood degree, complete quadrics, and \(\mathbb{C}^*\)-action. (English) Zbl 1461.62228

Summary: We study the maximum likelihood (ML) degree of linear concentration models in algebraic statistics. We relate it to an intersection problem on the variety of complete quadrics. This allows us to provide an explicit and basic, albeit very computationally complex, formula for the ML-degree. The variety of complete quadrics is an exact analogue for symmetric matrices of the permutohedron variety for the diagonal matrices.

MSC:

62R01 Algebraic statistics
62F12 Asymptotic properties of parametric estimators
60G15 Gaussian processes
14M15 Grassmannians, Schubert varieties, flag manifolds
14M17 Homogeneous spaces and generalizations
14N10 Enumerative problems (combinatorial problems) in algebraic geometry
14E05 Rational and birational maps
14C17 Intersection theory, characteristic classes, intersection multiplicities in algebraic geometry
14Q15 Computational aspects of higher-dimensional varieties

References:

[1] K. Adiprasito, J. Huh, and E. Katz, Hodge theory of matroids, Notices Amer. Math. Soc., 64 (2017), pp. 26-30, https://doi.org/10.1090/noti1463. · Zbl 1359.05017
[2] D. Anderson, Introduction to equivariant cohomology in algebraic geometry, in Contributions to Algebraic Geometry, Eur. Math. Soc., Zürich, 2012, pp. 71-92. · Zbl 1262.14019
[3] T. W. Anderson, Estimation of covariance matrices which are linear combinations or whose inverses are linear combinations of given matrices, in Essays in Probability and Statistics, University of North Carolina Press, Chapel Hill, NC, 1970, pp. 1-24. · Zbl 0265.62023
[4] M. F. Atiyah and R. Bott, The moment map and equivariant cohomology, Topology, 23 (1984), pp. 1-28. · Zbl 0521.58025
[5] E. Bifet, C. De Concini, and C. Procesi, Cohomology of regular embeddings, Adv. Math., 82 (1990), pp. 1-34. · Zbl 0743.14018
[6] N. Bourbaki, Éléments de mathématique. Fasc. XXXIV. Chapitre \textupVI: Systèmes de racines, Actualités Scientifiques et Industrielles 1337, Hermann, Paris, 1968.
[7] L. D. Brown, Fundamentals of Statistical Exponential Families: With Applications in Statistical Decision Theory, Institute of Mathematical Statistics, Hayward, CA, 1986. · Zbl 0685.62002
[8] J. Buczyński, J. A. Wiśniewski, and A. Weber, Algebraic Torus Actions on Contact Manifolds, preprint, https://arxiv.org/abs/1802.05002, 2020; to appear in J. Diff. Geom.
[9] M. Chardin, D. Eisenbud, and B. Ulrich, Hilbert series of residual intersections, Compos. Math., 151 (2015), pp. 1663-1687, https://doi.org/10.1112/S0010437X15007289. · Zbl 1329.13023
[10] N. Chriss and V. Ginzburg, Representation Theory and Complex Geometry, Birkhäuser Boston, Boston, MA, 1997. · Zbl 0879.22001
[11] Y. Cid-Ruiz, Mixed multiplicities and projective degrees of rational maps, J. Algebra, 566 (2021), pp. 136-162, https://doi.org/10.1016/j.jalgebra.2020.08.037. · Zbl 1471.13052
[12] P. Clarke and D. A. Cox, Moment maps, strict linear precision, and maximum likelihood degree one, Adv. Math., 370 (2020), 107233. · Zbl 1453.14125
[13] C. DeConcini, M. Goresky, R. MacPherson, and C. Procesi, On the geometry of quadrics and their degenerations, Comment. Math. Helv., 63 (1988), pp. 337-413. · Zbl 0693.14023
[14] C. De Concini and C. Procesi, Complete symmetric varieties, in Invariant Theory (Montecatini, 1982), Lecture Notes in Math. 996, Springer, Berlin, 1983, pp. 1-44, https://doi.org/10.1007/BFb0063234. · Zbl 0581.14041
[15] C. De Concini and C. Procesi, Complete symmetric varieties. II. Intersection theory, in Algebraic Groups and Related Topics (Kyoto/Nagoya, 1983), Adv. Stud. Pure Math. 6, North-Holland, Amsterdam, 1985, pp. 481-513, https://doi.org/10.2969/aspm/00610481. · Zbl 0596.14041
[16] I. V. Dolgachev, Classical Algebraic Geometry: A Modern View, Cambridge University Press, Cambridge, UK, 2012. · Zbl 1252.14001
[17] L. M. Fehér, R. Rimányi, and A. Weber, Motivic Chern classes and K-theoretic stable envelopes, Proc. London Math. Soc., 122 (2021), pp. 153-189. · Zbl 1522.14018
[18] A. Fink and D. E. Speyer, \(K\)-classes for matroids and equivariant localization, Duke Math. J., 161 (2012), pp. 2699-2723, https://doi.org/10.1215/00127094-1813296. · Zbl 1257.05023
[19] W. Fulton and R. Pandharipande, Notes on stable maps and quantum cohomology, in Algebraic Geometry-Santa Cruz 1995, Proc. Sympos. Pure Math. 62, AMS, Providence, RI, 1997, pp. 45-96, https://doi.org/10.1090/pspum/062.2/1492534. · Zbl 0898.14018
[20] L. D. Garcia-Puente and F. Sottile, Linear precision for parametric patches, Adv. Comput. Math., 33 (2010), pp. 191-214, https://doi.org/10.1007/s10444-009-9126-7. · Zbl 1193.65018
[21] D. R. Grayson and M. E. Stillman, Macaulay2, a Software System for Research in Algebraic Geometry, available at http://www.math.uiuc.edu/Macaulay2/.
[22] J. Huh, Rota’s Conjecture and Positivity of Algebraic Cycles in Permutohedral Varieties, Ph.D. thesis, University of Michigan, ProQuest LLC, Ann Arbor, MI, 2014, http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqm&rft_dat=xri:pqdiss:3672871.
[23] J. Huh, Varieties with maximum likelihood degree one, J. Algebr. Stat., 5 (2014), pp. 1-17, https://doi.org/10.18409/jas.v5i1.22. · Zbl 1346.14118
[24] J. Huh, Tropical geometry of matroids, in Current Developments in Mathematics 2016, Int. Press, Somerville, MA, 2018, pp. 1-46. · Zbl 1423.14004
[25] J. Huh and B. Sturmfels, Likelihood geometry, in Combinatorial Algebraic Geometry, Springer, Cham, 2014, pp. 63-117. · Zbl 1328.14004
[26] B. Iversen, A fixed point formula for action of tori on algebraic varieties, Invent. Math., 16 (1972), pp. 229-236, https://doi.org/10.1007/BF01425495. · Zbl 0246.14010
[27] M. M. Kapranov, Chow quotients of Grassmannians. I, in I. M. Gelfand Seminar, Adv. Soviet Math. 16, AMS, Providence, RI, 1993, pp. 29-110. · Zbl 0811.14043
[28] D. Laksov, Completed quadrics and linear maps, in Algebraic Geometry, Bowdoin, 1985 (Brunswick, Maine, 1985), Proc. Sympos. Pure Math. 46, AMS, Providence, RI, 1987, pp. 371-387, https://doi.org/10.1080/00927872.1987.10487449. · Zbl 0679.14030
[29] M. Michałek, L. Monin, and J. A. Wiśniewski, Software for Computing ML-degree, available at https://software.mis.mpg.de/GaussianModuli/index.html.
[30] M. Michałek, B. Sturmfels, C. Uhler, and P. Zwiernik, Exponential varieties, Proc. Lond. Math. Soc. (3), 112 (2016), pp. 27-56, https://doi.org/10.1112/plms/pdv066. · Zbl 1345.14048
[31] R. Morelli, The birational geometry of toric varieties, J. Algebr. Geom., 5 (1996), pp. 751-782. · Zbl 0871.14041
[32] G. Occhetta, L. Sola Conde, E. A. Romano, and J. A. Wiśniewski, Small Bandwidth \(\mathbb{C}^*\)-actions and Birational Geometry, preprint, https://arxiv.org/abs/1911.12129, 2019.
[33] OEIS Foundation Inc., The On-line Encyclopedia of Integer Sequences, http://oeis.org/A080599, 2020. · Zbl 1044.11108
[34] E. A. Romano and J. A. Wiśniewski, Adjunction for varieties with \(\mathbb{C}^*\) action, Transform. Groups (2020), https://doi.org/10.1007/s00031-020-09627-8.
[35] H. Schubert, Kalkül der abzählenden Geometrie, Springer-Verlag, Berlin, New York, 1979; reprint of the 1879 original, with an introduction by S. L. Kleiman. · Zbl 0417.51008
[36] J. Stückrad, On quasi-complete intersections, Arch. Math. (Basel), 58 (1992), pp. 529-538, https://doi.org/10.1007/BF01193521. · Zbl 0724.14031
[37] B. Sturmfels, S. Timme, and P. Zwiernik, Estimating linear covariance models with numerical nonlinear algebra, Algebraic Statist., 11 (2020), pp. 31-52. · Zbl 1461.62230
[38] B. Sturmfels and C. Uhler, Multivariate Gaussian, semidefinite matrix completion, and convex algebraic geometry, Ann. Inst. Statist. Math., 62 (2010), pp. 603-638, https://doi.org/10.1007/s10463-010-0295-4. · Zbl 1440.62255
[39] S. Sullivant, Algebraic Statistics, Grad. Stud. Math. 194, AMS, Providence, RI, 2018. · Zbl 1408.62004
[40] B. Teissier, Cycles évanescents, sections planes et conditions de Whitney, in Singularités à Cargèse (Rencontre Singularités Géom. Anal., Inst. Études Sci., Cargèse, 1972), Astérisque, Nos. 7 et 8, 1973, pp. 285-362. · Zbl 0295.14003
[41] B. Teissier, Variétés polaires. II. Multiplicités polaires, sections planes, et conditions de Whitney, in Algebraic geometry (La Rábida, 1981), Lecture Notes in Math. 961, Springer, Berlin, 1982, pp. 314-491, https://doi.org/10.1007/BFb0071291. · Zbl 0585.14008
[42] M. Thaddeus, Complete collineations revisited, Math. Ann., 315 (1999), pp. 469-495. · Zbl 0986.14030
[43] The Sage Developers, SageMath, the Sage Mathematics Software System (Version 7.6), 2017, https://www.sagemath.org.
[44] R. W. Thomason, Une formule de Lefschetz en \(K\)-théorie équivariante algébrique, Duke Math. J., 68 (1992), pp. 447-462, https://doi.org/10.1215/S0012-7094-92-06817-7. · Zbl 0813.19002
[45] C. Uhler, Geometry of maximum likelihood estimation in Gaussian graphical models, Ann. Statist., 40 (2012), pp. 238-261. · Zbl 1246.62140
[46] A. Weber, Equivariant Chern classes and localization theorem, J. Singularities, 5 (2012), pp. 153-176. · Zbl 1292.14009
[47] J. Włodarczyk, Birational cobordisms and factorization of birational maps, J. Algebr. Geom., 9 (2000), pp. 425-449. · Zbl 1010.14002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.