×

Energy spreading in strongly nonlinear disordered lattices. (English) Zbl 1451.34039

Summary: We study the scaling properties of energy spreading in disordered strongly nonlinear Hamiltonian lattices. Such lattices consist of nonlinearly coupled local linear or nonlinear oscillators, and demonstrate a rather slow, subdiffusive spreading of initially localized wave packets. We use a fractional nonlinear diffusion equation as a heuristic model of this process, and confirm that the scaling predictions resulting from a self-similar solution of this equation are indeed applicable to all studied cases. We show that the spreading in nonlinearly coupled linear oscillators slows down compared to a pure power law, while for nonlinear local oscillators a power law is valid in the whole studied range of parameters.

MSC:

34C15 Nonlinear oscillations and coupled oscillators for ordinary differential equations
35C06 Self-similar solutions to PDEs

Software:

odeint

References:

[1] Landau L D and Lifshitz E M 1980 Statistical Physics (Oxford: Butterworth-Heinemann)
[2] Gallavotti G (ed) 2008 The Fermi-Pasta-Ulam Problem(Lecture Notes in Physics vol 728) (Berlin: Springer) · Zbl 1138.81004 · doi:10.1007/978-3-540-72995-2
[3] Campbell D K, Rosenau P and Zaslavsky G 2005 Introduction: the Fermi-Pasta-Ulam problem—the first fifty years CHAOS15 015101 (see entire focus issue) · doi:10.1063/1.1889345
[4] Abrahams E (ed) 2010 50 Years of Anderson Localization (Singapore: World Scientific) · doi:10.1142/7663
[5] Shepelyansky D 1993 Delocalization of quantum chaos by weak nonlinearity Phys. Rev. Lett.70 1787-90 · doi:10.1103/PhysRevLett.70.1787
[6] Molina M I 1998 Transport of localized and extended excitations in a nonlinear Anderson model Phys. Rev. B 58 12547-50 · doi:10.1103/PhysRevB.58.12547
[7] Pikovsky A S and Shepelyansky D L 2008 Destruction of Anderson localization by a weak nonlinearity Phys. Rev. Lett.100 094101 · doi:10.1103/PhysRevLett.100.094101
[8] Fishman S, Krivolapov Y and Soffer A 2008 On the problem of dynamical localization in the nonlinear Schrodinger equation with a random potential J. Stat. Phys.131 843-65 · Zbl 1149.82027 · doi:10.1007/s10955-007-9472-0
[9] Garcia-Mata I and Shepelyansky D L 2009 Nonlinear delocalization on disordered Stark ladder Eur. Phys. J. B 71 121-4 · doi:10.1140/epjb/e2009-00265-5
[10] Flach S, Krimer D O and Skokos Ch 2009 Universal spreading of wave packets in disordered nonlinear systems Phys. Rev. Lett.102 024101 · doi:10.1103/PhysRevLett.102.024101
[11] Skokos Ch, Krimer D O, Komineas S and Flach S 2009 Delocalization of wave packets in disordered nonlinear chains Phys. Rev. E 79 056211 · doi:10.1103/PhysRevE.79.056211
[12] Mulansky M, Ahnert K, Pikovsky A and Shepelyansky D L 2009 Dynamical thermalization of disordered nonlinear lattices Phys. Rev. E 80 056212 · doi:10.1103/PhysRevE.80.056212
[13] Skokos Ch and Flach S 2010 Spreading of wave packets in disordered systems with tunable nonlinearity Phys. Rev. E 82 016208 · doi:10.1103/PhysRevE.82.016208
[14] Flach S 2010 Spreading of waves in nonlinear disordered media Chem. Phys.375 548-56 · doi:10.1016/j.chemphys.2010.02.022
[15] Laptyeva T V, Bodyfelt J D, Krimer D O, Skokos Ch and Flach S 2010 The crossover from strong to weak chaos for nonlinear waves in disordered systems Europhys. Lett.91 30001 · doi:10.1209/0295-5075/91/30001
[16] Mulansky M and Pikovsky A 2010 Spreading in disordered lattices with different nonlinearities Europhys. Lett.90 10015 · doi:10.1209/0295-5075/90/10015
[17] Johansson M, Kopidakis G and Aubry S 2010 KAM tori in 1D random discrete nonlinear Schrödinger model? Europhys. Lett.91 50001 · doi:10.1209/0295-5075/91/50001
[18] Mulansky M, Ahnert K and Pikovsky A 2011 Scaling of energy spreading in strongly nonlinear disordered lattices Phys. Rev. E 83 026205 · doi:10.1103/PhysRevE.83.026205
[19] Ivanchenko M V, Laptyeva T V and Flach S 2011 Anderson localization or nonlinear wave? A matter of probability Phys. Rev. Lett.107 240602 · doi:10.1103/PhysRevLett.107.240602
[20] Fishman S, Krivolapov Y and Soffer A 2012 The nonlinear Schrödinger equation with a random potential: results and puzzles Nonlinearity25 R53-72 · Zbl 1236.35166
[21] Pikovsky A and Fishman S 2011 Scaling properties of weak chaos in nonlinear disordered lattices Phys. Rev. E 83 025201 · doi:10.1103/PhysRevE.83.025201
[22] Roy S and Pikovsky A 2012 Spreading of energy in the Ding-Dong model CHAOS22 026118 · Zbl 1331.37114 · doi:10.1063/1.3695369
[23] Mulansky M and Pikovsky A 2012 Scaling of energy spreading in strongly nonlinear lattices Phys. Rev. E 86 056214 · doi:10.1103/PhysRevE.86.056214
[24] Ahnert K and Pikovsky A 2009 Compactons and chaos in strongly nonlinear lattices Phys. Rev. E 79 026209 · doi:10.1103/PhysRevE.79.026209
[25] Rosenau P and Schochet S 2005 Almost compact breathers in anharmonic lattices near the continuum limit Phys. Rev. Lett.94 045503 · doi:10.1103/PhysRevLett.94.045503
[26] Veksler H, Krivolapov Y and Fishman S 2009 Spreading for the generalized nonlinear Schrödinger equation with disorder Phys. Rev. E 80 037201 · doi:10.1103/PhysRevE.80.037201
[27] Zaslavsky G M and Chirikov B V 1972 Stochastic instabilities in nonlinear oscillations Sov. Phys.—Usp.14 549 · Zbl 1156.34335 · doi:10.1070/PU1972v014n05ABEH004669
[28] Lichtenberg A J and Lieberman M A 1992 Regular and Chaotic Dynamics (New York: Springer) · Zbl 0748.70001 · doi:10.1007/978-1-4757-2184-3
[29] Mulansky M 2012 PhD Thesis University Potsdam
[30] Zaslavsky G M 1994 Fractional kinetic equation for Hamiltonian chaos Physica D 76 110-22 · Zbl 1194.37163 · doi:10.1016/0167-2789(94)90254-2
[31] Shlesinger M F, Zaslavsky G M and Klafter J 1993 Strange kinetics Nature363 31-7 · doi:10.1038/363031a0
[32] Metzler R and Klafter J 2000 The random walk’s guide to anomalous diffusion: a fractional dynamics approach Phys. Rep.339 1-77 · Zbl 0984.82032 · doi:10.1016/S0370-1573(00)00070-3
[33] Barenblatt G I 1996 Scaling, Self-Similarity and Intermediate Asymptotics (Cambridge: Cambridge University Press) · Zbl 0907.76002 · doi:10.1017/CBO9781107050242
[34] Gorenflo R, Luchko Y and Mainardi F 2000 Wright functions as scale-invariant solutions of the diusion-wave equation J. Comput. Appl. Math.118 175-91 · Zbl 0973.35012 · doi:10.1016/S0377-0427(00)00288-0
[35] Polyanin A D and Zaitsev V F 2003 Handbook of Nonlinear Partial Differential Equations (London: Chapman and Hall) · Zbl 1024.35001 · doi:10.1201/9780203489659
[36] McLachlan R I 1995 On the numerical integration of ordinary differential equations by symmetric composition methods SIAM J. Sci. Comput.16 151-68 · Zbl 0821.65048 · doi:10.1137/0916010
[37] Ahnert K and Mulansky M 2011 Odeint—solving ordinary differential equations in C + + AIP Conf. Proc.1389 1586-9 · doi:10.1063/1.3637934
[38] Mulansky M, Ahnert K, Pikovsky A and Shepelyansky D 2011 Strong and weak chaos in weakly nonintegrable many-body Hamiltonian systems J. Stat. Phys.145 1256-74 · Zbl 1252.82033 · doi:10.1007/s10955-011-0335-3
[39] Zaslavsky G M 2005 Hamiltonian Chaos and Fractional Dynamics (Oxford: Oxford University Press) · Zbl 1083.37002
[40] Schwiete G and Finkel’stein A M 2010 Nonlinear wave-packet dynamics in a disordered medium Phys. Rev. Lett.104 103904 · doi:10.1103/PhysRevLett.104.103904
[41] Garcia-Mata I and Shepelyansky D L 2009 Delocalization induced by nonlinearity in systems with disorder Phys. Rev. E 79 026205 · doi:10.1103/PhysRevE.79.026205
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.