×

Multi-scale modeling of a wound-healing cell migration assay. (English) Zbl 1451.92063

Summary: A continuum model and a discrete model are developed to capture the population-scale and cell-scale behavior in a wound-healing cell migration assay created from a scrape wound in a confluent cell monolayer. During wound closure, the cell population forms a sustained traveling wave, with close contact between cells behind the wavefront. Cells exhibit contact inhibition of migration and contact-limited proliferation. The continuum model includes the two dominant mechanisms and characteristics of cell migration and proliferation, using a cell diffusivity function that decreases with cell density and a logistic proliferative growth term. The discrete model arises naturally from the continuum model. Individual cells are simulated as continuous-time random walkers with nearest-neighbor transitions, together with a birth/death process. The migration and proliferation parameters are determined by analysing individual mice 3T3 fibroblast cell trajectories obtained during the development of a confluent cell monolayer and in a wound healing assay. The population-scale model successfully predicts the shape and speed of the traveling wave, while the discrete model is also successful in capturing the contact inhibition of migration effects.

MSC:

92C17 Cell movement (chemotaxis, etc.)
92C32 Pathology, pathophysiology
35Q92 PDEs in connection with biology, chemistry and other natural sciences
Full Text: DOI

References:

[1] Abercrombie, M., The crawling movement of cells, Proc. R. Soc. London B, 207, 129-147 (1980)
[2] Anderson, A.; Chaplain, M. A.J., Continuous and discrete mathematical models of tumor-induced angiogenesis, Bull. Math. Biol., 60, 857-900 (1998) · Zbl 0923.92011
[3] Boucher, A.; Doisy, A.; Ronot, X.; Garbay, C., Cell migration analysis after in vitro wounding injury with a multi-agent approach, Artif. Intell. Rev., 12, 137-162 (1998)
[4] Cai, A. Q.; Landman, K. A.; Hughes, B. D., Modelling directional guidance and motility regulation in cell migration, Bull. Math. Biol., 68, 25-52 (2006) · Zbl 1334.92054
[5] Canosa, J., On a nonlinear diffusion equation describing population growth, IBM J. Res. Dev., 17, 307-313 (1973) · Zbl 0266.65080
[6] Cheng, G.; Youssef, B. B.; Markenscoff, P.; Zygourakis, K., Cell population dynamics modulate the rates of tissue growth processes, Biophys. J., 90, 713-724 (2006)
[7] Dale, P. D.; Maini, P. K.; Sherratt, J. A., Mathematical modeling of corneal epithelial wound healing, Math. Biosci., 124, 127-147 (1994) · Zbl 0818.92007
[8] Devore, J.; Peck, R., Statistics: The Exploration and Analysis of Data (2001), Thomson Learning: Thomson Learning Duxbury
[9] Dunn, G. A., Characterising a kinetic response: time averaged measures of cell speed and directional persistence, Agents Actions, 22, Suppl., 14-33 (1983)
[10] Gail, M. H.; Boone, C. W., The locomotion of mouse fibroblasts in tissue culture, Biophys. J., 10, 980-993 (1970)
[11] Haugh, J. M., Deterministic model of dermal wound invasion incorporating receptor-mediated signal transduction and spatial gradient sensing, Biophys. J., 90, 2297-2308 (2006)
[12] Hughes, B.D., 1995. Random Walks and Random Environments, vol. 1. Oxford University Press, Oxford. · Zbl 0820.60053
[13] Lanas, A.; Garcá-Gonzalez, A.; Esteva, F.; Piazuelo, E.; Jimenez, P.; Morandeira, J. R., Collagen secretion by human gastric and skin fibroblasts: implications for ulcer healing, Eur. Surg. Res., 30, 48-54 (1998)
[14] Landman, K.A., Cai, A.Q., Hughes, B.D., 2006. A new travelling wave model of a wound-healing cell migration assay, in review.
[15] Lee, Y.; Kouvroukoglou, S.; McIntire, L. V.; Zygourakis, K., A cellular automaton model for the proliferation of migrating contact inhibited cells, Biophys. J., 69, 1284-1298 (1995)
[16] Liggett, T. M., Interacting Particle Systems (1985), Springer: Springer New York · Zbl 0559.60078
[17] Maini, P. K.; McElwain, D. L.S.; Leavesley, D., Travelling waves in a wound healing assay, Appl. Math. Lett., 17, 575-580 (2004) · Zbl 1055.92025
[18] Maini, P. K.; McElwain, D. L.S.; Leavesley, D., Travelling wave model to interpret a wound-healing cell migration assay for human peritoneal mesothelial cells, Tissue Eng., 10, 475-482 (2004)
[19] Murray, J.D., 2002. Mathematical Biology, vol. 1, third ed., Springer, New York. · Zbl 1006.92001
[20] Othmer, H. G.; Stevens, A., Aggregation, blowup and collapse: the abc’s of taxis in reinforced random walks, SIAM J. Appl. Math., 57, 1044-1081 (1997) · Zbl 0990.35128
[21] Othmer, H. G.; Dunbar, S. R.; Alt, W., Models of dispersal in biological systems, J. Math. Biol., 26, 263-298 (1988) · Zbl 0713.92018
[22] Painter, K. J.; Sherratt, J. A., Modelling the movement of interacting cell populations, J. Theor. Biol., 225, 327-339 (2003) · Zbl 1464.92050
[23] Savla, U.; Olson, L. E.; Waters, C. M., Mathematical modeling of airway epithelial wound closure, J. Appl. Physiol., 96, 566-574 (2004)
[24] Schönborn, O.; Desai, R. C.; Stauffer, D., Nonlinear bias and the convective Fisher equation, J. Phys. A Math. Gen., 27, L251-L255 (1994)
[25] Sherratt, J. A., Wavefront propagation in a competition equation with a new motility term modelling contact inhibition between cell populations, Proc. R. Soc. London A, 456, 2365-2386 (2000) · Zbl 1005.76098
[26] Sherratt, J. A.; Chaplain, M. A.J., A new mathematical model for avascular tumour growth, J. Math. Biol., 43, 291-312 (2001) · Zbl 0990.92021
[27] Simpson, M. J.; Landman, K. A., Characterizing and minimizing the operator split error for Fisher’s equation, Appl. Math. Lett., 19, 612-620 (2006) · Zbl 1114.65346
[28] Simpson, M. J.; Landman, K. A.; Hughes, B. D.; Newgreen, D. F., Looking inside an invasion wave of cells using continuum models: proliferation is the key, J. Theor. Biol., 243, 343-360 (2006) · Zbl 1447.92062
[29] Stokes, C. L.; Lauffenburger, D. A.; Williams, S. K., Migration of individual microvessel endothelial cells: stochastic model and parameter measurement, J. Cell Sci., 99, 419-430 (1991)
[30] Takamizawa, K.; Niu, S.; Matsuda, T., Mathematical simulation of unidirectional tissue formation: in vitro transanastomotic endothelialization model, J. Biomater. Sci. Polym. Ed., 8, 323-334 (1997)
[31] Tompson, A. F.B.; Dougherty, D. E., Particle-grid methods for reacting flows in porous media with application to Fisher’s equation, Appl. Math. Model., 16, 374-383 (1992) · Zbl 0800.76363
[32] Tremel, A., 2006. Cell migration and proliferation during monolayer formation. Experimental Semester Thesis, Department of Chemical and Biomolecular Engineering, The University of Melbourne.
[33] Tremel, A., Cai, A.Q., Tirtaatmadja, N., Hughes, B.D., Stevens, G., Landman, K.A., O’Connor, A., 2006. Cell migration and proliferation during monolayer formation, in preparation.
[34] Turner, S.; Sherratt, J. A.; Painter, K. J., From a discrete to a continuous model of biological cell movement, Phys. Rev. E, 69, 021910 (2005)
[35] Ura, H.; Takeda, F.; Okochi, H., An in vitro outgrowth culture system for normal human keratinocytes, J. Dermatol. Sci., 35, 19-28 (2004)
[36] Zahm, J. M.; Kaplan, H.; Hérard, A.; Doriot, F.; Pierrot, D.; Somelette, P.; Puchelle, E., Cell migration and proliferation during the in vitro repair of the respiratory epithelium, Cell Motil. Cytoskel., 37, 33-43 (1997)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.