×

Travelling waves in a wound healing assay. (English) Zbl 1055.92025

Summary: Several authors have predicted that cell propagation in a number of biological contexts, for example, wound healing, tumour cell invasion, angiogenesis, etc., occurs due to a constant speed travelling wave of invasion. The analyses of these models to arrive at this prediction are, in many cases, essentially an extension of the classical analysis of Fisher’s equation. Here, we show that a very simple wound healing assay does indeed give rise to constant speed travelling waves. To our knowledge, this is the first verification of Fisher’s equation in a medical context.

MSC:

92C50 Medical applications (general)
35Q92 PDEs in connection with biology, chemistry and other natural sciences
Full Text: DOI

References:

[1] Sherratt, J. A.; Murray, J. D., Models of epidermal wound healing, (Proc. Roy. Soc. Lond. B, 241 (1990)), 29-36 · Zbl 0721.92010
[2] Sheardown, H.; Cheng, Y.-L, Mechanisms of corneal epithelial wound healing, Chem. Eng. Sci., 19, 4517-4527 (1996)
[3] Dale, P. D.; Sherratt, J. A.; Maini, P. K., The speed of corneal epithelial wound healing, Appl. Math. Lett., 7, 2, 11-14 (1994) · Zbl 0791.92013
[4] Murray, J. D.; Maini, P. K.; Tranquillo, R. T., Mechanochemical models for generating biological pattern and form in development, Phys. Reports, 171, 59-84 (1988)
[5] Olsen, L.; Sherratt, J. A.; Maini, P. K., A mechanochemical model for adult dermal wound contraction: On the permanence of the contracted tissue displacement profile, J. Theor. Biol., 177, 113-128 (1995)
[6] Gatenby, R. A.; Gawlinski, E. T., A reaction-diffusion model of cancer invasion, Cancer Res., 56, 4740-4743 (1996)
[7] Perumpanani, A. J.; Sherratt, J. A.; Norbury, J.; Byrne, H., A two parameter family of travelling waves with a singular barrier arising from the modelling of matrix mediated malignant invasion, Physica D, 126, 145-159 (1999) · Zbl 1001.92523
[8] Chaplain, M. A.J; Byrne, H. M., Mathematical models for tumour angiogenesis: Numerical simulations and nonlinear wave solutions, Bull. Math. Biol., 57, 461-486 (1995) · Zbl 0812.92011
[9] Okubo, A.; Maini, P. K.; Williamson, M. H.; Murray, J. D., On the spatial spread of the grey squirrel in Britain, (Proc. Roy. Soc. Lond. B, 238 (1989)), 113-125
[10] Fisher, R. A., The wave of advance of advantageous genes, Ann. Eugenics, 7, 353-369 (1937) · JFM 63.1111.04
[11] Kolmogoroff, A.; Petrovsky, I.; Piscounoff, N., Étude de l’équation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique, Moscow Univ. Bull. Math, 1, 1-25 (1937) · Zbl 0018.32106
[12] Faull, R. J.; Stanley, J. M.; Fraser, S.; Power, D. A.; Leavesley, D. I., HB-EGF is produced in the peritoneal cavity and enhances mesothelial cell adhesion and migration, Kidney Int., 59, 614-624 (2001)
[13] Murray, J. D., Mathematical Biology (1993), Springer: Springer Berlin · Zbl 0779.92001
[14] Ebert, U.; van Saarloos, W., Front propagation into unstable states: Universal algebraic convergence towards uniformly translating pulled fronts, Physica D, 146, 1-99 (2000) · Zbl 0984.35030
[15] P.K. Maini, S. McElwain and D. Leavesley, A travelling wave model to interpret a wound healing cell migration assay for human peritoneal mesothelial cells (submitted).; P.K. Maini, S. McElwain and D. Leavesley, A travelling wave model to interpret a wound healing cell migration assay for human peritoneal mesothelial cells (submitted). · Zbl 1055.92025
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.