×

Two-level method for the total fractional-order variation model in image deblurring problem. (English) Zbl 1451.94008

Summary: Image deblurring with total fractional-order variation model is used to improve the quality of the deblurred images. This model is very efficient in preserving edges and removing staircase effect. However, the regularization matrix associated with the total fractional-order model is dense which complicate developing an efficient numerical algorithm. In this research work, we present an efficient and robust Two-Level method to overcome the dense problem. The Two-Level method started by reducing the problem to one small non-linear system with dense regularization matrix (Level-I) and one less expensive large linear system with sparse regularization matrix (Level-II). The derivation of the optimal regularization parameter of Level-II is studied and formula is presented. Numerical experiments on several images are also provided to demonstrate the efficiency of the Two-Level method.

MSC:

94A08 Image processing (compression, reconstruction, etc.) in information and communication theory
65F08 Preconditioners for iterative methods
65N55 Multigrid methods; domain decomposition for boundary value problems involving PDEs
Full Text: DOI

References:

[1] Fairag, F., A two-level finite-element discretization of the stream function form of the Navier-Stokes equations, Comput. Math. Appl., 36, 2, 117-127 (1998) · Zbl 0944.76034
[2] Girault, V.; Lions, J-L, Two-grid finite-element schemes for the steady Navier-Stokes problem in polyhedra, Portugaliae Mathematica, 58, 1, 25-58 (2001) · Zbl 0997.76043
[3] Layton, W., A two-level discretization method for the Navier-Stokes equations, Comput. Math. Appl., 26, 2, 33-38 (1993) · Zbl 0773.76042
[4] Shao, X-p; Han, D-f, A two-grid algorithm based on Newton iteration for the stream function form of the Navier-Stokes equations, Appl. Math.- J. Chinese Univ., 26, 3, 368 (2011) · Zbl 1249.65249
[5] Layton, W.; Lenferink, W., Two-level Picard and modified Picard methods for the Navier-Stokes equations, Appl. Math. Comput., 69, 2-3, 263-274 (1995) · Zbl 0828.76017
[6] Foster, EL; Iliescu, T.; Wells, DR, A two-level finite element discretization of the streamfunction formulation of the stationary quasi-geostrophic equations of the ocean, Comput. Math. Appl., 66, 7, 1261-1271 (2013) · Zbl 1381.86003
[7] Chun-feng, R.; Yi-chen, M., Two-grid error estimates for the stream function form of Navier-Stokes equations, Appl. Math. Mech., 23, 7, 773-782 (2002) · Zbl 1018.76026
[8] Chun-feng, R.; Yi-chen, M., Residual a posteriori error estimate two-grid methods for the steady Navier-Stokes equation with stream function form, Appl. Math. Mech., 25, 5, 546-559 (2004) · Zbl 1145.76405
[9] Layton, W.; Ye, X., Two-level discretizations of the stream function form of the Navier-Stokes equations, Numeri. Funct. Anal. Optim., 20, 9-10, 909-916 (1999) · Zbl 0972.76059
[10] Shao, X.; Han, D., A two-grid method with backtracking technique for the stream function form of the Navier-Stokes equations, Appl. Math. Comput., 274, 649-660 (2016) · Zbl 1410.76197
[11] Xu, J., A novel two-grid method for semilinear elliptic equations, SIAM J. Sci. Comput., 15, 1, 231-237 (1994) · Zbl 0795.65077
[12] Xu, J., Some two-grid finite element methods, Contemp. Math., 157, 79-79 (1994) · Zbl 0802.65112
[13] Yashtini, M., Kang, S.H.: Alternating direction method of multiplier for Euler’s elastica-based denoising. In: International Conference on Scale Space and Variational Methods in Computer Vision, pp 690-701. Springer (2015) · Zbl 1444.94026
[14] Layton, W.; Tobiska, L., A two-level method with backtracking for the Navier-Stokes equations, SIAM J. Numer. Anal., 35, 5, 2035-2054 (1998) · Zbl 0913.76050
[15] Campisi, P., Egiazarian, K.: Blind Image Deconvolution: Theory and Applications. CRC Press (2016)
[16] Groetsch, C.W., Groetsch, C.: Inverse Problems in the Mathematical Sciences, vol. 52. Springer (1993) · Zbl 0779.45001
[17] Tikhonov, AN, Regularization of incorrectly posed problems, Soviet Math. Dokl, 4, 1624-1627 (1963) · Zbl 0183.11601
[18] Rudin, LI; Osher, S.; Fatemi, E., Nonlinear total variation based noise removal algorithms, Physica D: Nonlin. Phenom., 60, 1, 259-268 (1992) · Zbl 0780.49028
[19] Acar, R.; Vogel, CR, Analysis of bounded variation penalty methods for ill-posed problems, Inverse Probl., 10, 6, 1217 (1994) · Zbl 0809.35151
[20] Zhang, J.; Chen, K.; Yu, B., An iterative Lagrange multiplier method for constrained total-variation-based image denoising, SIAM J. Numer. Anal., 50, 3, 983-1003 (2012) · Zbl 06070606
[21] Osher, S.; Solé, A.; Vese, L., Image decomposition and restoration using total variation minimization and the H1, Multiscale Model. Simul., 1, 3, 349-370 (2003) · Zbl 1051.49026
[22] Chan, TF; Yip, AM; Park, FE, Simultaneous total variation image inpainting and blind deconvolution, Int. J. Imaging Syst. Technol., 15, 1, 92-102 (2005)
[23] Chan, T.; Marquina, A.; Mulet, P., High-order total variation-based image restoration, SIAM J. Sci. Comput., 22, 2, 503-516 (2000) · Zbl 0968.68175
[24] Shen, J.; Kang, SH; Chan, TF, Euler’s elastica and curvature-based inpainting, SIAM J. Appl. Math., 63, 2, 564-592 (2003) · Zbl 1028.68185
[25] Zhu, W.; Chan, T., Image denoising using mean curvature of image surface, SIAM J. Imag. Sci., 5, 1, 1-32 (2012) · Zbl 1258.94021
[26] Chang, Q.; Tai, X-C; Xing, L., A compound algorithm of denoising using second-order and fourth-order partial differential equations, Numer. Math. Theory Methods Appl, 2, 353-376 (2009) · Zbl 1212.68383
[27] Chen, D., Chen, Y., Xue, D.: Fractional-order total variation image restoration based on primal-dual algorithm. In: Abstract and Applied Analysis, vol. 2013. Hindawi Publishing Corporation (2013) · Zbl 1364.94091
[28] Chen, D.; Chen, Y.; Xue, D., Three fractional-order TV-L2 models for image denoising, J. Comput. Inform. Syst., 9, 12, 4773-4780 (2013)
[29] Chan, R.; Lanza, A.; Morigi, S.; Sgallari, F., An adaptive strategy for the restoration of textured images using fractional order regularization, Numer. Math.: Theory Methods Appl., 6, 1, 276-296 (2013) · Zbl 1289.68196
[30] Chen, D.; Sun, S.; Zhang, C.; Chen, Y.; Xue, D., Fractional-order TV-L2 model for image denoising, Central Europ. J. Phys., 11, 10, 1414-1422 (2013)
[31] Zhang, J.; Chen, K., A total fractional-order variation model for image restoration with nonhomogeneous boundary conditions and its numerical solution, SIAM J. Imag. Sci., 8, 4, 2487-2518 (2015) · Zbl 1327.62388
[32] Zhang, J.; Wei, Z.; Xiao, L., Adaptive fractional-order multi-scale method for image denoising, J. Math. Imag. Vis., 43, 1, 39-49 (2012) · Zbl 1255.68278
[33] Chan, R.; Lanza, A.; Morigi, S.; Sgallari, F., An adaptive strategy for the restoration of textured images using fractional order regularization, Numer. Math.: Theory Methods Appl., 6, 1, 276-296 (2013) · Zbl 1289.68196
[34] Zhang, J.; Chen, K., Variational image registration by a total fractional-order variation model, J. Comput. Phys., 293, 442-461 (2015) · Zbl 1349.94050
[35] Miller, K.S., Ross, B: An introduction to the fractional calculus and fractional differential equations (1993) · Zbl 0789.26002
[36] Oldham, K., Spanier, J.: The Fractional Calculus Theory and Applications of Differentiation and Integration to Arbitrary Order, vol. 111. Elsevier (1974) · Zbl 0292.26011
[37] Podlubny, I.: Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications, vol. 198. Academic Press (1998) · Zbl 0924.34008
[38] Meerschaert, MM; Tadjeran, C., Finite difference approximations for fractional advection-dispersion flow equations, J. Comput. Appl. Math., 172, 1, 65-77 (2004) · Zbl 1126.76346
[39] Meerschaert, MM; Tadjeran, C., Finite difference approximations for two-sided space-fractional partial differential equations, Appl. Numer. Math., 56, 1, 80-90 (2006) · Zbl 1086.65087
[40] Wang, H.; Du, N., Fast solution methods for space-fractional diffusion equations, J. Comput. Appl. Math., 255, 376-383 (2014) · Zbl 1291.65324
[41] Chen, K.; Fairag, F.; Al-Mahdi, A., Preconditioning techniques for an image deblurring problem, Numer. Linear Algebra Appl., 23, 3, 570-584 (2016) · Zbl 1413.94006
[42] Vogel, CR; Oman, ME, Fast, robust total variation-based reconstruction of noisy, blurred images, IEEE Trans Image Process., 7, 6, 813-824 (1998) · Zbl 0993.94519
[43] Goldstein, T.; Osher, S., The split Bregman method for l1-regularized problems, SIAM J. Imaging Sci., 2, 2, 323-343 (2009) · Zbl 1177.65088
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.