×

Global error bounds for mixed Quasi-Hemivariational inequality problems on Hadamard manifolds. (English) Zbl 07249884

Summary: In this paper, we introduce and study a class of mixed quasi-hemivariational inequality problems on Hadamard manifolds (in short, (MQHIP)). Some regularized gap functions for (MQHIP) are proposed under suitable conditions. Finally, global error bounds for (MQHIP) in terms of regularized gap functions are derived by employing some strong monotonicity conditions and using the properties of Clarke’s generalized directional derivative. The main results presented in this paper improve and generalize corresponding results in literature.

MSC:

47J20 Variational and other types of inequalities involving nonlinear operators (general)
49J40 Variational inequalities
Full Text: DOI

References:

[1] Panagiotopoulos, PD., Nonconvex energy functions, hemivariational inequalities and substationarity principles, Acta Mech, 42, 160-183 (1983)
[2] Migórski, S.; Ochal, A.; Sofonea, M., Nonlinear inclusions and hemivariational inequalities. Models and analysis of contact problems, 26 (2013), New York (NY): Springer, New York (NY) · Zbl 1262.49001
[3] Panagiotopoulos, PD., Hemivariational inequalities. Applications to mechanics and engineering (1993), Berlin: Springer, Berlin · Zbl 0826.73002
[4] Shahzad, N.; Zegeye, H., Convergence theorems of common fixed point, variational inequality and equilibrium problems, J Nonlinear Var Anal, 3, 189-203 (2019) · Zbl 1479.47073
[5] Yao, Y.; Postolache, M.; Yao, J-C., An iterative algorithm for solving generalized variational inequalities and fixed points problems, Mathematics, 7 (2019)
[6] Wang, F.; Pham, H., On a new algorithm for solving variational inequality and fixed point problems, J Nonlinear Var Anal, 3, 225-233 (2019) · Zbl 1479.47077
[7] Ferreira, OP; Oliveira, PR., Proximal point algorithm on Riemannian manifolds, Optimization, 51, 257-270 (2002) · Zbl 1013.49024
[8] Udriște, C., Convex functions and optimization methods on Riemannian manifolds, 297 (1994), Kluwer Academic Publishers · Zbl 0932.53003
[9] Ferreira, OP; Pérez, LRL; Németh, SZ., Singularities of monotone vector fields and an extragradient-type algorithm, J Global Optim, 31, 133-151 (2005) · Zbl 1229.58007
[10] Rapcsák, T., Smooth nonlinear optimization in \(#### (1997)\), Dordrecht: Kluwer Academic Publishers, Dordrecht · Zbl 1009.90109
[11] Németh, SZ., Variational inequalities on Hadamard manifolds, Nonlinear Anal, 52, 1491-1498 (2003) · Zbl 1016.49012
[12] Ansari, QH; Islam, M.; Yao, J-C., Nonsmooth variational inequalities on Hadamard manifolds, Appl Anal (2018)
[13] Ansari, QH; Feeroz, B.; Li, XB., Variational inclusion problems in Hadamard manifolds, J Nonlinear Convex Anal, 19, 219-237 (2018) · Zbl 1395.49013
[14] Ansari, QH; Babu, F., Existence and boundedness of solutions to inclusion problems for maximal monotone vector fields in Hadamard manifolds, Optim Lett (2019)
[15] Colao, V.; López, G.; Marino, G., Equilibrium problems in Hadamard manifolds, J Math Anal Appl, 388, 61-77 (2012) · Zbl 1273.49015
[16] Li, C.; Yao, J-C., Variational inequalities for set-valued vector fields on Riemannian manifolds convexity of the solution set and the proximal point algorithm, SIAM J Control Optim, 50, 2486-2514 (2012) · Zbl 1257.49011
[17] Bento, GC; Ferreira, OP; Pereira, YRL., Proximal point method for vector optimization on Hadamard manifolds, Oper Res Lett, 46, 13-18 (2018) · Zbl 1525.90383
[18] Wang, J.; Li, C.; Lopez, G., Proximal point algorithms on Hadamard manifolds: linear convergence and finite termination, SIAM J Optim, 26, 2696-2729 (2016) · Zbl 1354.49069
[19] Al-Homidan, S.; Ansari, QH; Babu, F., Halpern and Mann type algorithms for fixed points and inclusion problems on Hadamard manifolds, Numer Funct Anal Optim, 40, 621-653 (2019) · Zbl 1447.49032
[20] Ansari, QH; Babu, F.; Yao, J-C., Regularization of proximal point algorithms in Hadamard manifolds, J Fixed Point Theory Appl, 21 (2019) · Zbl 1412.49037
[21] Tang, G.; Zhou, L.; Huang, NJ., Existence results for a class of hemivariational inequality problems on Hadamard manifolds, Optimization, 65, 1451-1461 (2016) · Zbl 1345.49009
[22] Solodov, MV; Svaiter, PF., Error bounds for proximal point subproblems and associated inexact proximal point algorithms, Math Program, 88, 371-389 (2000) · Zbl 0963.90064
[23] Zhao, X.; Ng, KF; Li, C., Linear regularity and linear convergence of projection-based methods for solving convex feasibility problems, Appl Math Optim, 78, 613-641 (2018) · Zbl 1492.47089
[24] Fukushima, M., Equivalent differentiable optimization problems and descent methods for asymmetric variational inequality problems, Math Program, 53, 99-110 (1992) · Zbl 0756.90081
[25] Yamashita, N.; Fukushima, M., Equivalent unconstrained minimization and global error bounds for variational inequality problems, SIAM J Control Optim, 35, 273-284 (1997) · Zbl 0873.49006
[26] Anh, LQ; Hung, NV; Tam, VM., Regularized gap functions and error bounds for generalized mixed strong vector quasiequilibrium problems, Comput Appl Math, 37, 5935-5950 (2018) · Zbl 1413.49021
[27] Bigi, G.; Passacantando, M., Gap functions for quasi-equilibria, J Global Optim, 66, 791-810 (2016) · Zbl 1387.90251
[28] Darabi, M.; Zafarani, J., Hadamard well-posedness for vector parametric equilibrium problems, J Nonlinear Var Anal, 1, 281-295 (2017) · Zbl 1417.49006
[29] Khan, SA; Chen, JW., Gap function and global error bounds for generalized mixed quasivariational inequalities, Appl Math Comput, 260, 71-81 (2015) · Zbl 1410.49010
[30] Muu, LD; Quy, NV., DC-gap function and proximal methods for solving Nash-Cournot oligopolistic equilibrium models involving concave cost, J Appl Numer Optim, 1, 13-24 (2019)
[31] Li, X.; Zhou, L.; Huang, NJ., Gap functions and global error bounds for generalized mixed variational inequalities on Hadamard manifolds, J Optim Theory Appl, 168, 830-849 (2015) · Zbl 1341.58013
[32] Li, XB; Zhou, LW; Huang, NJ., Gap functions and descent methods for equilibrium problems on Hadamard manifolds, J Nonlinear Convex Anal, 17, 807-826 (2016) · Zbl 1341.49010
[33] Chavel, I., Riemannian geometry-A modern introduction (1993), Cambridge: Cambridge University Press, Cambridge · Zbl 0810.53001
[34] Sakai, T., Riemannian geometry, 149 (1996), Providence: American Mathematical Society, Providence · Zbl 0886.53002
[35] Da Cruz Neto, JX; Ferreira, OP; Pérez, LRL, Convex and monotonetransformable mathematical programming problems and a proximal-like point method, J Global Optim, 35, 53-69 (2006) · Zbl 1104.90035
[36] Li, X.; Huang, NJ., Generalized vector quasi-equilibrium problems on Hadamard manifolds, Optim Lett, 9, 155-170 (2015) · Zbl 1338.90412
[37] Hosseini, S.; Pouryayevali, MR., Generalized gradients and characterization of epi-Lipschitz sets in Riemannian manifolds, Nonlinear Anal, 74, 3884-3895 (2011) · Zbl 1225.49046
[38] Bento, GC; Ferreira, OP; Oliveira, PR., Proximal point method for a special class of nonconvex functions on Hadamard manifolds, Optimization, 64, 289-319 (2012) · Zbl 1310.49006
[39] Li, SL; Li, C.; Liou, Y-C, Existence of solutions for variational inequalities on Riemannian manifolds, Nonlinear Anal TMA, 71, 5695-5706 (2009) · Zbl 1180.58012
[40] Aubin, JP; Frankowska, H., Set-valued analysis (1990), Boston: Birkhauser, Boston · Zbl 0713.49021
[41] Németh, SZ., Five kinds of monotone vector fields, Pure Math Appl, 9, 417-428 (1998) · Zbl 0937.58010
[42] Bridson, MR; Haefliger, A., Metric spaces of non-positive curvature (1999), Berlin: Springer, Berlin · Zbl 0988.53001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.