×

Global behaviors of weak KAM solutions for exact symplectic twist maps. (English) Zbl 1444.37047

Summary: We investigated several global behaviors of the weak KAM solutions \(u_c(x, t)\) parametrized by \(c \in H^1(\mathbb{T}, \mathbb{R})\). For the suspended Hamiltonian \(H(x, p, t)\) of the exact symplectic twist map, we could find a family of weak KAM solutions \(u_c(x, t)\) parametrized by \(c(\sigma) \in H^1(\mathbb{T}, \mathbb{R})\) with \(c(\sigma)\) continuous and monotonic and \[\partial_t u_c + H(x, \partial_x u_c + c, t) = \alpha(c), \quad \text{a.e.} (x, t) \in \mathbb{T}^2,\] such that sequence of weak KAM solutions \(\{ u_c \}_{c \in H^1 ( \mathbb{T} , \mathbb{R} )}\) is 1/2-Hölder continuity of parameter \(\sigma \in \mathbb{R} \). Moreover, for each generalized characteristic (no matter regular or singular) solving \[\begin{cases} \dot{x} ( s ) \in \text{co} \left[ \partial_p H \left( x ( s ) , c + D^+ u_c ( x ( s ) , s + t ) , s + t \right) \right], \\ x ( 0 ) = x_0, \quad ( x_0 , t ) \in \mathbb{T}^2, \end{cases}\] we evaluate it by a uniquely identified rotational number \(\omega(c) \in H_1(\mathbb{T}, \mathbb{R})\). This property leads to a certain topological obstruction in the phase space and causes local transitive phenomenon of trajectories. Besides, we discussed this applies to high-dimensional cases.

MSC:

37J11 Symplectic and canonical mappings
37E40 Dynamical aspects of twist maps
37E45 Rotation numbers and vectors
37J40 Perturbations of finite-dimensional Hamiltonian systems, normal forms, small divisors, KAM theory, Arnol’d diffusion
37J46 Periodic, homoclinic and heteroclinic orbits of finite-dimensional Hamiltonian systems
37J51 Action-minimizing orbits and measures for finite-dimensional Hamiltonian and Lagrangian systems; variational principles; degree-theoretic methods
49L25 Viscosity solutions to Hamilton-Jacobi equations in optimal control and differential games

References:

[1] Poincare, H., Les Methodes Nouvelles de la Méchanique Celeste, vol. II (1892) · JFM 24.1130.01
[2] Bernard, P., Connecting orbits of time dependent Lagrangian systems, Ann. Inst. Fourier (Grenoble), 52, 5, 1533-1568 (2002) · Zbl 1008.37035
[3] Zhang, J., Suspension of the billiard maps in the lazutkin’s coordinate, Discrete Contin. Dyn. Syst., 37, 10 (2016)
[4] Zhang, J., Coexistence of period 2 and 3 caustics for deformative nearly circular billiard maps, Discrete Contin. Dyn. Syst., Ser. A, 39, 6419-6440 (2019) · Zbl 1435.37047
[5] Bangert, V., Mather sets for twist maps and geodesics on tori, Dyn. Rep., 1, 1-56 (1988) · Zbl 0664.53021
[6] Golé, C., Symplectic Twist Maps: Global Variational Techniques (2001) · Zbl 1330.37001
[7] Moser, J., Monotone twist mappings and the calculus of variations, Ergod. Theory Dyn. Syst., 6, 3, 401-413 (1986) · Zbl 0619.49020
[8] Mather, J., Differentiability of the minimal average action as a function of the rotation number, Bol. Soc. Bras. Mat., 21, 59-70 (1990) · Zbl 0766.58033
[9] Mather, J. N., Action minimizing invariant measures for positive definite Lagrangian systems, Math. Z., 207, 2, 169-207 (1991) · Zbl 0696.58027
[10] A. Fathi, Weak KAM Theorem in Lagrangian Dynamics, ISBN-13: 978-0521822282 Cambridge University Press, Cambridge, in press. · Zbl 0885.58022
[11] Cannarsa, P.; Yu, Y., Singular dynamics for semiconcave functions, J. Eur. Math. Soc., 11, 5, 999-1024 (2009) · Zbl 1194.35015
[12] Mather, J. N., Variational construction of connecting orbits, Ann. Inst. Fourier (Grenoble), 43, 5, 1349-1386 (1993) · Zbl 0803.58019
[13] Zhou, M., Hölder regularity of weak kam solutions in a priori unstable systems, Math. Res. Lett., 18 (01 2011) · Zbl 1253.37060
[14] Cheng, C.-Q.; Xue, J., Order property and modulus of continuity of weak kam solutions, Calc. Var. Partial Differ. Equ., 57 (04 2018) · Zbl 1387.37060
[15] Mather, J., Modulus of Continuity for Peierls’s Barrier, NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., vol. 209 (1987), Reidel: Reidel Dordrecht · Zbl 0658.58013
[16] Mather, J., Variational construction of orbits of twist diffeomorphisms, J. Am. Math. Soc., 4, 207-263 (1991) · Zbl 0737.58029
[17] Arnaud, M.-C.; Zavidovique, M., On the transversal dependence of weak K.A.M. solutions for symplectic twist maps
[18] Zhang, J., Generically mane set supports uniquely ergodic measure for residual cohomology class, Proc. Am. Math. Soc., 145 (10 2016)
[19] Cheng, C.-Q.; Yan, J., Existence of diffusion orbits in a priori unstable Hamiltonian systems, J. Differ. Geom., 67, 3, 457-517 (2004) · Zbl 1098.37055
[20] Contreras, G.; Iturriaga, R.; Sanchez Morgado, H., Weak solutions of the hamilton-jacobi equation for time periodic lagrangians (07 2013)
[21] Wang, K.; Yan, J., A new kind of lax-oleinik type operator with parameters for time-periodic positive definite lagrangian systems, Commun. Math. Phys., 309 (11 2010)
[22] Cannarsa, P.; Sinestrari, C., Semiconcave Functions, Hamilton-Jacobi Equations, and Optimal Control, Progress in Nonlinear Differential Equations and Their Applications, vol. 58 (2004), Birkhäuser Boston, Inc.: Birkhäuser Boston, Inc. Boston, MA · Zbl 1095.49003
[23] Dafermos, C. M., Generalized characteristics and the structure of solutions of hyperbolic conservation laws, Indiana Univ. Math. J., 26, 6, 1097-1119 (1977) · Zbl 0377.35051
[24] Cheng, C.-Q.; Yan, J., Arnold diffusion in Hamiltonian systems: a priori unstable case, J. Differ. Geom., 82, 2, 229-277 (2009) · Zbl 1179.37081
[25] Cheng, C.-Q., Dynamics around the double resonance, Camb. J. Math., 5, 153-228 (2017) · Zbl 1378.37103
[26] Cannarsa, P.; Cheng, W.; Fathi, A., On the topology of the set of singularities of a solution to the Hamilton-Jacobi equation, C. R. Math. Acad. Sci. Paris, 355, 2, 176-180 (2017) · Zbl 1361.35043
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.