×

Global well-posedness and uniform boundedness of urban crime models: one-dimensional case. (English) Zbl 1440.35329

Summary: In this paper, we study a PDE system which was proposed by M. B. Short et al. [Math. Models Methods Appl. Sci. 18, 1249–1267 (2008; Zbl 1180.35530)] to describe the spatial-temporal dynamics in urban criminal activity. By establishing a user-friendly integral inequality, we prove the global existence, uniqueness and uniform boundedness of the classical solution to this system in one-dimension space. Our result extends the local well-posedness by N. Rodriguez and A. Bertozzi [Math. Models Methods Appl. Sci. 20, 1425–1457 (2010; Zbl 1200.35308)] to global.

MSC:

35Q91 PDEs in connection with game theory, economics, social and behavioral sciences
91D10 Models of societies, social and urban evolution
35A01 Existence problems for PDEs: global existence, local existence, non-existence
35A02 Uniqueness problems for PDEs: global uniqueness, local uniqueness, non-uniqueness
35B45 A priori estimates in context of PDEs
35B50 Maximum principles in context of PDEs
Full Text: DOI

References:

[1] Amann, H., Dynamic theory of quasilinear parabolic equations. II. Reaction-diffusion systems, Differ. Integral Equ., 3, 13-75 (1990) · Zbl 0729.35062
[2] Amann, H., Nonhomogeneous linear and quasilinear elliptic and parabolic boundary value problems, (Function Spaces, Differential Operators and Nonlinear Analysis, vol. 133. Function Spaces, Differential Operators and Nonlinear Analysis, vol. 133, Teubner, Stuttgart, Leipzig (1993)), 9-126 · Zbl 0810.35037
[3] Anselin, L.; Cohen, J.; Cook, D.; Gorr, W.; Tita, G., Spatial analyses of crime, Crim. Justice, 4, 212-262 (2000)
[4] Berestycki, H.; Mei, L.; Wei, J., The existence and stability of spike solutions for a chemotaxis system modeling crime pattern formation · Zbl 1455.35072
[5] Berestycki, H.; Nadal, J.-P.; Rodríguez, N., A model of riots dynamics: shocks, diffusion and thresholds, Netw. Heterog. Media, 10, 443-475 (2015) · Zbl 1342.35399
[6] Berestyki, H.; Rodríguez, N., Analysis of a heterogeneous model for riot dynamics: the effect of censorship of information, Eur. J. Appl. Math., 27, 554-582 (2016) · Zbl 1408.91172
[7] Berestycki, H.; Rodríguez, N.; Ryzhik, L., Traveling wave solutions in a reaction-diffusion model for criminal activity, Multiscale Model. Simul., 11, 1097-1126 (2013) · Zbl 1288.35160
[8] Berestycki, H.; Rossi, L.; Rodríguez, N., Periodic cycles of social outbursts of activity, J. Differ. Equ., 264, 163-196 (2018) · Zbl 1384.34053
[9] Berestycki, H.; Wei, J.; Winter, M., Existence of symmetric and asymmetric spikes for a crime hotspot model, SIAM J. Math. Anal., 46, 691-719 (2014) · Zbl 1347.34035
[10] Brantingham, P., Domestic burglary repeats and space-time clusters the dimensions of risk, Eur. J. Criminol., 2, 67-92 (2005)
[11] Buttenschoen, A.; Kolokolnikov, T.; Ward, M.; Wei, J., Cops-on-the-dots: the linear stability of crime hotspots for a 1-D reaction-diffusion model of urban crime, Eur. J. Appl. Math., 1-47 (2019)
[12] Cantrell, R.; Cosner, C.; Manásevich, R., Global bifurcation of solutions for crime modeling equations, SIAM J. Math. Anal., 44, 1340-1358 (2012) · Zbl 1248.35212
[13] Chaturapruek, S.; Breslau, J.; Yazdi, D.; Kolokolnikov, T.; McCalla, S., Crime modeling with Lévy flights, SIAM J. Appl. Math., 73, 1703-1720 (2013) · Zbl 1280.35158
[14] Chertock, A.; Kurganov, A.; Wang, X.; Wu, Y., On a chemotaxis model with saturated chemotactic flux, Kinet. Relat. Models, 5, 51-95 (2012) · Zbl 1398.92033
[15] D’Orsogna, M.; Perc, M., Statistical physics of crime: a review, Phys. Life Rev., 12, 1-21 (2015)
[16] Freitag, M., Global solutions to a higher-dimensional system related to crime modeling, Math. Methods Appl. Sci., 41, 6326-6335 (2018) · Zbl 1401.35203
[17] García-Huidobro, M.; Manásevich, R.; Mawhin, J., Solvability of a nonlinear Neumann problem for systems arising from a burglary model, Appl. Math. Lett., 35, 102-108 (2014) · Zbl 1314.34045
[18] Groff, E. R.; Johnson, S. D.; Thornton, A., State of the art in agent-based modeling of urban crime: an overview, J. Quant. Criminol., 35, 155-193 (2019)
[19] Gu, Y.; Wang, Q.; Yi, G., Stationary patterns and their selection mechanism of urban crime models with heterogeneous near-repeat victimization effect, Eur. J. Appl. Math., 28, 141-178 (2017) · Zbl 1376.91125
[20] Heihoff, F., Generalized solutions for a system of partial differential equations arising from urban crime modeling with a logistic source term · Zbl 1434.35246
[21] Hillen, T.; Painter, K., A user’s guide to PDE models for chemotaxis, J. Math. Biol., 58, 183-217 (2009) · Zbl 1161.92003
[22] Horstmann, D., From 1970 until present: the Keller-Segel model in chemotaxis and its consequences I, Jahresber. Dtsch. Math.-Ver., 105, 103-165 (2003) · Zbl 1071.35001
[23] Johnson, S. D.; Bowers, K.; Hirschfield, A., New insights into the spatial and temporal distribution of repeat victimization, Br. J. Criminol., 37, 224-241 (1997)
[24] Jones, P.; Brantingham, P.; Chayes, L., Statistical models of criminal behavior: the effects of law enforcement actions, Math. Models Methods Appl. Sci., 20, 1397-1423 (2010) · Zbl 1202.62177
[25] Keller, E. F.; Segel, L. A., Model for chemotaxis, J. Theor. Biol., 30, 225-234 (1971) · Zbl 1170.92307
[26] Kolokolnikov, T.; Ward, M.; Wei, J., The stability of steady-state hot-spot patterns for a reaction-diffusion model of urban crime, Discrete Contin. Dyn. Syst., Ser. B, 19, 1373-1410 (2014) · Zbl 1304.35051
[27] Ladyženskaja, O. A.; Solonnikov, V. A.; Ural’ceva, N. N., Linear and Quasi-Linear Equations of Parabolic Type (1968), American Mathematical Society, 648 pages · Zbl 0174.15403
[28] Lankeit, J., A new approach toward boundedness in a two-dimensional parabolic chemotaxis system with singular sensitivity, Math. Methods Appl. Sci., 39, 394-404 (2016) · Zbl 1333.35100
[29] Lloyd, D.; O’Farrell, H., On localised hotspots of an urban crime model, Phys. D: Nonlinear Phenom., 253, 23-39 (2013) · Zbl 1284.91486
[30] Lloyd, D.; Santitissadeekorn, N.; Short, M., Exploring data assimilation and forecasting issues for an urban crime model, Eur. J. Appl. Math., 27, 451-478 (2016) · Zbl 1408.91168
[31] Manásevich, R.; Garcia-Huidobro, M.; Mawhin, J., Existence of solutions for a 1-D boundary value problem coming from a model for burglary, Nonlinear Anal., Real World Appl., 14, 1939-1946 (2013) · Zbl 1304.34040
[32] Manásevich, R.; Phan, Q.; Souplet, P., Global existence of solutions for a chemotaxis-type system arising in crime modelling, Eur. J. Appl. Math., 24, 273-296 (2013) · Zbl 1284.35445
[33] M. Lindstrom, A. Bertozzi, A continuum PDE model for agents on a lattic with applications to homelessness, preprint, 2019.
[34] Pan, C.; Li, B.; Wang, C.; Zhang, Y.; Geldner, N.; Wang, L.; Bertozzi, A., Crime modeling with truncated Lévy flights for residential burglary models, Math. Models Methods Appl. Sci., 28, 1857-1880 (2018) · Zbl 1411.35295
[35] Pitcher, A., Adding police to a mathematical model of burglary, Eur. J. Appl. Math., 21, 401-419 (2010) · Zbl 1233.91225
[36] L. Ricketson, A continuum model of residential burglary incorporating law enforcement, preprint.
[37] Rodríguez, N., On the global well-posedness theory for a class of PDE models for criminal activity, Phys. D: Nonlinear Phenom., 260, 191-200 (2013) · Zbl 1286.91110
[38] Rodríguez, N.; Bertozzi, A., Local existence and uniqueness of solutions to a PDE model of criminal behavior, Math. Models Methods Appl. Sci., 20, 1425-1457 (2010) · Zbl 1200.35308
[39] Rodríguez, N.; Winkler, M., On the global existence and qualitative behavior of one-dimensional solutions to a model for urban crime · Zbl 1503.35234
[40] Saldaña, J.; Aguareles, M.; Avinyó, A.; Pellicer, M.; Ripoll, J., An age-structured population approach for the mathematical modeling of urban burglaries, SIAM J. Appl. Dyn. Syst., 17, 2733-2760 (2018) · Zbl 1418.91435
[41] Short, M.; Bertozzi, A.; Brantingham, P., Nonlinear patterns in urban crime: hotspots, bifurcations, and suppression, SIAM J. Appl. Dyn. Syst., 9, 462-483 (2010) · Zbl 1282.91273
[42] Short, M.; D’Orsogna, M.; Pasour, V.; Tita, G.; Brantingham, P.; Bertozzi, A.; Chayes, L., A statistical model of criminal behavior, Math. Models Methods Appl. Sci., 18, 1249-1267 (2008) · Zbl 1180.35530
[43] Tse, W. H.; Ward, M., Hotspot formation and dynamics for a continuum model of urban crime, Eur. J. Appl. Math., 27, 583-624 (2016) · Zbl 1408.91169
[44] Tse, W. H.; Ward, M., Asynchronous instabilities of crime hotspots for a 1-D reaction-diffusion model of urban crime with focused police patrol, SIAM J. Appl. Dyn. Syst., 17, 2018-2075 (2018) · Zbl 1397.35138
[45] Winkler, M., Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model, J. Differ. Equ., 248, 2889-2905 (2010) · Zbl 1190.92004
[46] Winkler, M., Global solvability and stabilization in a two-dimensional cross-diffusion system modeling urban crime propagation, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, 36, 1747-1790 (2019) · Zbl 1428.35611
[47] Yang, C.; Rodríguez, N., A numerical perspective on traveling wave solutions in a system for rioting activity, Appl. Math. Comput., 364, Article 124646 pp. (2020) · Zbl 1433.91006
[48] Zipkin, J.; Short, M.; Bertozzi, A., Cops on the dots in a mathematical model of urban crime and police response, Discrete Contin. Dyn. Syst., Ser. B, 19, 1479-1506 (2014) · Zbl 1304.35702
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.