×

Well-posedness and ill-posedness of a multidimensional chemotaxis system in the critical Besov spaces. (English) Zbl 1442.35006

This paper considers the Cauchy problem to the following multidimensional nonlinear system: \[ \begin{cases} \partial_t u-\Delta u =\operatorname{div}(uv), \quad (t,x)\in\mathbb{R}^+\times \mathbb{R}^d,\\ \partial_t v-\nabla u =0,\\ (u,v)|_{t=0}=(u_0,v_0), \end{cases} \] The main contribution of this paper is to study the well-posedness and ill-posedness of the above system in critical Besov spaces \(\dot{B}_{p,1}^{\frac{d}{p}-2}(\mathbb{R}^d)\times\Big(\dot{B}_{p,1}^{\frac{d}{p}-2}(\mathbb{R}^d)\Big)^d (d\geq 2)\). More precisely, the authors show that for \(1\leq p<2d\), then the locally well-posedness for large initial data and globally well-posedness for small initial data of the above system are proved. The present paper is devoted to establishing the ill-posedness in the sense that a “norm inflation” phenomenon occurs for \(p>2d\), that is, some arbitrarily small initial data can produce solutions arbitrarily large in critical Besov spaces after an arbitrarily short time. Here the ill-posedness result of the multidimensional Keller-Segel type chemotaxis system are new. The proofs of main results are delicate and seem to be right. The paper is well organized with a complete list of relevant references. The presentation of the paper is very clear. I think it is a good paper. But the question that for the large initial data whether the system is globally well-posed in the critical Besov Space is still open. This will inspire more researchers to study the system extensively.

MSC:

35A01 Existence problems for PDEs: global existence, local existence, non-existence
35A02 Uniqueness problems for PDEs: global uniqueness, local uniqueness, non-uniqueness
35G55 Initial value problems for systems of nonlinear higher-order PDEs
35Q92 PDEs in connection with biology, chemistry and other natural sciences
92C17 Cell movement (chemotaxis, etc.)
Full Text: DOI

References:

[1] Abidi, H., Équation de Navier-Stokes avec densité et viscosité variables dans l’espace critique, Rev. Mat. Iberoam., 23, 2, 537-586 (2007) · Zbl 1175.35099
[2] Bahouri, H.; Chemin, J. Y.; Danchin, R., (Fourier Analysis and Nonlinear Partial Differential Equations. Fourier Analysis and Nonlinear Partial Differential Equations, Grundlehren der mathematischen Wissenschaften, vol. 343 (2011), Springer-Verlag) · Zbl 1227.35004
[3] Bony, J., Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires, Ann. Sci. Éc. Norm. Super., 14, 2, 209-246 (1981) · Zbl 0495.35024
[4] Bourgain, J.; Pavlović, N., Ill-posedness of the Navier-Stokes equations in a critical space in 3D, J. Funct. Anal., 255, 9, 2233-2247 (2008) · Zbl 1161.35037
[5] Cannone, M., (Harmonic Analysis Tools for Solving Incompressible Navier-Stokes Equations. Harmonic Analysis Tools for Solving Incompressible Navier-Stokes Equations, Handbook of Mathmatical Fluid Dynamics, vol. III (2004), North-Holland: North-Holland Amsterdam) · Zbl 1222.35139
[6] Chaplain, M. A.J.; Lolas, G., Mathematical modelling of cancer invasion of tissue: dynamic heterogeneity, Net. Hetero. Med., 1, 3, 399-439 (2006) · Zbl 1108.92023
[7] Chaplain, M. A.J.; Preziosi, L., Macroscopic Modelling of the Growth and Developement of Tumor Masses (2000), Politecnico di Torino
[8] Chen, Q.; Miao, C.; Zhang, Z., Global well-posedness for compressible Navier-Stokes equations with highly oscillating initial velocity, Comm. Pure Appl. Math., 63, 9, 1173-1224 (2010) · Zbl 1202.35002
[9] Chen, Q.; Miao, C.; Zhang, Z., Well-posedness in critical spaces for the compressible Navier-Stokes equations with density dependent viscosities, Rev. Mat. Iberoam., 26, 3, 915-946 (2010) · Zbl 1205.35189
[10] Chen, Q.; Miao, C.; Zhang, Z., On the ill-posedness of the compressible Navier-Stokes equations in the critical Besov spaces, Rev. Mat. Iberoam., 31, 4, 1375-1402 (2015) · Zbl 1333.35158
[11] Corrias, L.; Perthame, B.; Zaag, H., A chemotaxis model motivated by angiogenesis, C. R. Acad. Sci. Paris Ser. I., 336, 2, 141-146 (2003) · Zbl 1028.35062
[12] Danchin, R., Global existence in critical spaces for compressible Navier-Stokes equations, Invent. Math., 141, 3, 579-614 (2000) · Zbl 0958.35100
[13] Danchin, R., On the uniqueness in critical spaces for compressible Navier-Stokes equations, Nonlinear Differential Equations Appl., 12, 1, 111-128 (2005) · Zbl 1125.76061
[14] Diaz, J. I.; Nagai, T.; Rakotoson, J. M., Symmetrization techniques on unbounded domains: application to a chemotaxis system on \(\boldsymbol{R}^N\), J. Differential Equations, 145, 1, 156-183 (1998) · Zbl 0908.35016
[15] Gazzola, F.; Weth, T., Finite time blow up and global solutions for semilinear parabolic equations with initial data at high energy level, Differential Integral Equations, 18, 9, 961-990 (2005) · Zbl 1212.35248
[16] Ghergu, M.; Radulescŭ, V. D., Nonlinear PDEs: Mathematical Models in Biology Chemistry and Population Genetics (2012), Springer-Verlag Berlin Heidelberg · Zbl 1227.35001
[17] Hao, C., Global well-posedness for a multidimensional chemotaxis model in critical Besov spaces, Z. Angew. Math. Phys., 63, 5, 825-834 (2012) · Zbl 1258.35195
[18] Hillen, T.; Painter, K. J., A user’s guide to PDE models for chemotaxis, J. Math. Biol., 58, 1-2, 183-217 (2009) · Zbl 1161.92003
[19] Horstmann, D., From 1970 until present: The Keller-Segel model in chemotaxis and its consequences: I, Jahresber. Deutsch. Math.-Verein., 105, 103-165 (2003) · Zbl 1071.35001
[20] Iwabuchi, T., Global well-posedness for Keller-Segel system in Besov type spaces, J. Math. Anal. Appl., 379, 2, 930-948 (2011) · Zbl 1223.35193
[21] Keller, E. F.; Segel, L. A., Initiation of slime mold aggregation viewed as an instability, J. Theoret. Biol., 26, 3, 399-415 (1970) · Zbl 1170.92306
[22] Keller, E. F.; Segel, L. A., Model for chemotaxis, J. Theoret. Biol., 30, 2, 225-234 (1971) · Zbl 1170.92307
[23] Keller, E. F.; Segel, L. A., Traveling bands of chemotactic bacteria: A theoretical analysis, J. Theoret. Biol., 30, 2, 235-248 (1971) · Zbl 1170.92308
[24] Kozono, H.; Sugiyama, Y., Local existence and finite time blow-up of solutions in the 2-D Keller-Segel system, J. Evol. Equ., 8, 2, 353-378 (2008) · Zbl 1162.35040
[25] Li, D.; Li, T.; Zhao, K., On a hyperbolic-parabolic system modeling chemotaxis, Math. Models Methods Appl. Sci., 21, 8, 1631-1650 (2011) · Zbl 1230.35070
[26] Li, T.; Pan, R.; Zhao, K., Global dynamics of a hyperbolic-parabolic model arising from chemotaxis, SIAM J. Appl. Math., 72, 1, 417-443 (2012) · Zbl 1244.35150
[27] Li, T.; Wang, Z. A., Nonlinear stability of traveling waves to a hyperbolic-parabolic system modeling chemotaxis, SIAM J. Appl. Math., 70, 5, 1522-1541 (2009) · Zbl 1206.35041
[28] Li, T.; Wang, Z. A., Nonlinear stability of large amplitude viscous shock waves of a generalized hyperbolic-parabolic system arising in chemotaxis, Math. Model. Methods Appl. Sci., 20, 11, 1967-1998 (2010) · Zbl 1213.35081
[29] Othmer, H.; Stevens, A., Aggregation, blowup and collapse: The ABC’s of taxis in reinforced random walks, SIAM J. Appl. Math., 57, 4, 1044-1081 (1997) · Zbl 0990.35128
[30] Papageorgiou, N. S.; Radulescŭ, V. D.; Repovs, D. D., (Nonlinear Analysis - Theory and Methods. Nonlinear Analysis - Theory and Methods, Springer Monographs in Mathematics (2019), Springer: Springer Cham) · Zbl 1414.46003
[31] Perthame, B., Transport Equations in Biology (2007), Birkhäuser Verlag · Zbl 1185.92006
[32] Scribner, T. L.; Segel, L. A.; Rogers, E. H., A numerical study of the formation and propagation of traveling bands of chemotactic bacteria, J. Theoret. Biol., 46, 1, 189-219 (1974)
[33] Souplet, P.; Tayachi, S., A optimal condition for non-simultaneous blow-up in a reaction-diffusion system, J. Math. Soc. Japan, 56, 2, 571-584 (2004) · Zbl 1059.35049
[34] R. Xu, W. Lian, Y. Niu, Global well-posedness of coupled parabolic systems, SCIENCE CHINA Mathematics, https://doi.org/10.1007/s11425-017-9280-x. · Zbl 1431.35063
[35] Xu, R.; Su, J., Global existence and finite time blow-up for a class of semilinear pseudo-parabolic equations, J. Funct. Anal., 264, 12, 2732-2763 (2013) · Zbl 1279.35065
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.