×

The sliding method for the nonlocal Monge-Ampère operator. (English) Zbl 1437.35419

Summary: We develop a sliding method for the nonlocal Monge-Ampère operator. We first establish a narrow region principle in bounded domains, which plays an important role in the sliding method. Then we consider the equation with the nonlocal Monge-Ampère operator and derive the monotonicity of solutions in both bounded domains and the whole space. We use a new idea-estimating the singular integrals defining the nonlocal Monge-Ampère operator along a sequence of approximate maximum points.

MSC:

35J96 Monge-Ampère equations
Full Text: DOI

References:

[1] Berestycki, H.; Caffarelli, L.; Nirenberg, L., Inequalitites for second-order elliptic equations with applications to unbounded domains, I, Duke Math. J., 81, 467-494 (1996) · Zbl 0860.35004
[2] Berestycki, H.; Caffarelli, L.; Nirenberg, L., Monotonicity for elliptic equations in unbounded Lipschitz domains, Comm. Pure Appl. Math., 50, 1089-1111 (1997) · Zbl 0906.35035
[3] Berestycki, H.; Nirenberg, L., Monotonicity, symmetry and antisymmetry of solutions of semilinear elliptic equations, J. Geom. Phys., 5, 237-275 (1988) · Zbl 0698.35031
[4] Berestycki, H.; Nirenberg, L., Some qualitative properties of solutions of semilinear elliptic equations in cylindrical domains, (Analysis, Et Cetera (1990), Academic Press), 115-164 · Zbl 0705.35004
[5] Berestycki, H.; Nirenberg, L., On the method of moving planes and the sliding method, Bol. Soc. Brasil. Mat., 22, 1-37 (1991) · Zbl 0784.35025
[6] Cabré, X.; Cinti, E., Sharp energy estimates for nonlinear fractional diffusion equations, Calc. Var. Partial Differ. Equ., 49, 1-2, 233-269 (2014) · Zbl 1282.35399
[7] Cabré, X.; Sire, Y., Nonlinear equations for fractional Laplacians, I: Regularity, maximum principles, and Hamiltonian estimates, Ann. Inst. Henri Poincare C Non Linear Anal., 31, 1, 23-53 (2014), Elsevier Masson · Zbl 1286.35248
[8] Cabré, X.; Sire, Y., Nonlinear equations for fractional Laplacians II: Existence, uniqueness, and qualitative properties of solutions, Trans. Amer. Math. Soc., 367, 2, 911-941 (2015) · Zbl 1317.35280
[9] Caffarelli, L.; Charro, F., On a fractional Monge-Ampère operator, Ann. PDE., 1, 4 (2015) · Zbl 1393.35268
[10] Caffarelli, L.; Salsa, S.; Silvestre, L., Regularity estimates for the solution and the free boundary of the obstacle problem for the fractional Laplacian, Invent. Math., 171, 2, 425-461 (2008) · Zbl 1148.35097
[11] Caffarelli, L.; Silvestre, L., An extension problem related to the fractional Laplacian, Comm. Partial Differ. Equ., 32, 8, 1245-1260 (2007) · Zbl 1143.26002
[12] Cai, M.; Ma, L., Moving planes for nonlinear fractional Laplacian equation with negative powers, Discrete Contin. Dyn. Syst., 38, 9, 4603-4615 (2018) · Zbl 1397.35330
[13] Chen, W.; Fang, Y.; Yang, R., Liouville theorems involving the fractional Laplacian on a half space, Adv. Math., 274, 167-198 (2015) · Zbl 1372.35332
[14] Chen, W.; Li, C., Maximum principles for the fractional \(p\)-Laplacian and symmetry of solutions, Adv. Math., 335, 735-758 (2018) · Zbl 1395.35055
[15] Chen, W.; Li, C.; Li, Y., A direct method of moving planes for the fractional Laplacian, Adv. Math., 308, 404-437 (2017) · Zbl 1362.35320
[16] Chen, W.; Li, C.; Li, G., Maximum principles for a fully nonlinear fractional order equation and symmetry of solutions, Calc. Var. Partial Differ. Equ., 56, 2, 29 (2017) · Zbl 1368.35110
[17] Chen, W.; Li, Y.; Ma, P., The Fractional Laplacian (2019), World Scientific Publishing Co.
[18] Dipierro, S.; Soave, N.; Valdinoci, E., On fractional elliptic equations in Lipschitz sets and epigraphs: regularity, monotonicity and rigidity results, Math. Ann., 369, 1283-1326 (2017) · Zbl 1388.35208
[19] Felmer, P.; Quaas, A.; Tan, J., Positive solutions of the nonlinear Schrödinger equation with the fractional Laplacian, Proc. Edinb. Math. Soc. A, 142, 1237-1262 (2012) · Zbl 1290.35308
[20] Felmer, P.; Wang, Y., Radial symmetry of positive solutions to equations involving the fractional Laplacian, Commun. Contemp. Math., 16, 01, Article 1350023 pp. (2014) · Zbl 1286.35016
[21] Liu, Z.; Chen, W., Maximum principles and monotonicity of solutions for fractional \(p\)-equations in unbounded domains (2019), arXiv preprint arXiv:1905.06493
[22] Musina, R.; Nazarov, A. I., On fractional Laplacians, Comm. Partial Differential Equations, 39, 9, 1780-1790 (2014) · Zbl 1304.47061
[23] Ros-Oton, X.; Serra, J., The Dirichlet problem for the fractional Laplacian: Regularity up to the boundary, J. Math. Pures Appl., 101, 3, 275-302 (2014) · Zbl 1285.35020
[24] Wu, L.; Chen, W., Monotonicity of solutions for fractional equations with De Giorgi type nonlinearities (2019), arXiv preprint arXiv:1905.09999v2
[25] Wu, L.; Chen, W., The sliding methods for the fractional \(p\)-Laplacian, Adv. Math., 361, Article 106933 pp. (2020) · Zbl 1507.35334
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.