×

Risk averse stochastic structural topology optimization. (English) Zbl 1440.74291

Summary: A novel approach for risk-averse structural topology optimization under uncertainties is presented, which takes into account stochastic data of the state equation, specifically random material properties and random forces. For the distribution of material, a phase field approach is employed, which allows for arbitrary topological changes during the iterative optimization. The state equation is assumed to be a high-dimensional PDE parametrized in a (truncated finite) set of random variables. The examined case employs linearized elasticity with a parametric elasticity tensor. For practical purposes, instead of an optimization with respect to the expectation of the involved random fields, the designed structures should in particular be robust with respect to rather unlikely and possibly critical events. For this, as a common risk measure, the Conditional Value at Risk (CVaR), is introduced to the cost functional of the minimization procedure. The proposed method is illustrated with numerical examples based on Monte Carlo sampling for different risk values and compared with the result of the deterministic formulation. It is observed that the resulting shapes dependent on the risk parameter of the functional and can deviate significantly from the deterministic case.

MSC:

74P15 Topological methods for optimization problems in solid mechanics
35R60 PDEs with randomness, stochastic partial differential equations
47B80 Random linear operators
60H35 Computational methods for stochastic equations (aspects of stochastic analysis)
65N12 Stability and convergence of numerical methods for boundary value problems involving PDEs
65N75 Probabilistic methods, particle methods, etc. for boundary value problems involving PDEs

Software:

FEniCS; PETSc; UMFPACK
Full Text: DOI

References:

[1] Bendsoe, M. P.; Sigmund, O., Topology Optimization: Theory, Methods, and Applications (2013), Springer Science & Business Media · Zbl 1059.74001
[2] Eschenauer, H. A.; Olhoff, N., Topology optimization of continuum structures: A review, Appl. Mech. Rev., 54, 4, 331-390 (2001)
[3] Rozvany, G., Aims, scope, methods, history and unified terminology of computer-aided topology optimization in structural mechanics, Struct. Multidiscip. Optimiz., 21, 2, 90-108 (2001)
[4] Blank, L.; Garcke, H.; Farshbaf-Shaker, M. H.; Styles, V., Relating phase field and sharp interface approaches to structural topology optimization, ESAIM Control Optim. Calc. Var., 20, 4, 1025-1058 (2014) · Zbl 1301.49113
[5] Asadpoure, A.; Tootkaboni, M.; Guest, J. K., Robust topology optimization of structures with uncertainties in stiffness-application to truss structures, Comput. Struct., 89, 11, 1131-1141 (2011)
[6] Baumann, B.; Kost, B., Structure assembling by stochastic topology optimization, Comput. Struct., 83, 25, 2175-2184 (2005)
[7] Evgrafov, A.; Patriksson, M., Stochastic structural topology optimization: Discretization and penalty function approach, Struct. Multidiscip. Optim., 25, 3, 174-188 (2003) · Zbl 1243.74152
[8] Artzner, P.; Delbaen, F.; Eber, J.-M.; Heath, D., Coherent measures of risk, Math. Finance, 9, 3, 203-228 (1999) · Zbl 0980.91042
[9] Ruszczyński, A.; Shapiro, A., Optimization of convex risk functions, Math. Oper. Res., 31, 3, 433-452 (2006) · Zbl 1278.90283
[10] Kouri, D. P.; Heinkenschloss, M.; Ridzal, D.; van Bloemen Waanders, B. G., A trust-region algorithm with adaptive stochastic collocation for PDE optimization under uncertainty, SIAM J. Sci. Comput., 35, 4, A1847-A1879 (2013) · Zbl 1275.49047
[11] Pang, J.-S.; Leyffer, S., On the global minimization of the value-at-risk, Optim. Methods Softw., 19, 5, 611-631 (2004) · Zbl 1114.91320
[12] Dambrine, M.; Dapogny, C.; Harbrecht, H., Shape optimization for quadratic functionals and states with random right-hand sides, SIAM J. Control Optim., 53, 5, 3081-3103 (2015) · Zbl 1326.49070
[13] Allaire, G.; Dapogny, C., A deterministic approximation method in shape optimization under random uncertainties, SMAI J. Comput. Math., 1, 83-143 (2015) · Zbl 1416.74080
[14] Yang, Y.; Zhu, M.; Shields, M. D.; Guest, J. K., Topology optimization of continuum structures subjected to filtered white noise stochastic excitations, Comput. Methods Appl. Mech. Engrg., 324, 438-456 (2017) · Zbl 1439.74306
[15] Keshavarzzadeh, V.; Fernandez, F.; Tortorelli, D. A., Topology optimization under uncertainty via non-intrusive polynomial chaos expansion, Comput. Methods Appl. Mech. Engrg., 318, 120-147 (2017) · Zbl 1439.74281
[16] Keshavarzzadeh, V.; Meidani, H.; Tortorelli, D. A., Gradient based design optimization under uncertainty via stochastic expansion methods, Comput. Methods Appl. Mech. Engrg., 306, 47-76 (2016) · Zbl 1436.74052
[17] Jansen, M.; Lombaert, G.; Schevenels, M., Robust topology optimization of structures with imperfect geometry based on geometric nonlinear analysis, Comput. Methods Appl. Mech. Engrg., 285, 452-467 (2015) · Zbl 1423.74749
[18] Maute, K., Topology optimization under uncertainty, (Topology Optimization in Structural and Continuum Mechanics (2014), Springer), 457-471
[19] Zhao, Q.; Chen, X.; Ma, Z.-D.; Lin, Y., Robust topology optimization based on stochastic collocation methods under loading uncertainties, Math. Probl. Eng., 2015 (2015) · Zbl 1394.74146
[20] Lazarov, B. S.; Schevenels, M.; Sigmund, O., Topology optimization with geometric uncertainties by perturbation techniques, Internat. J. Numer. Methods Engrg., 90, 11, 1321-1336 (2012) · Zbl 1242.74075
[21] Javed, A.; Rout, B., Tolerance range selection of topologically optimized structures with the effects of uncertainties of manufacturing process, Proc. Instit. Mech. Eng. Part C: J. Mech. Eng. Sci., 228, 18, 3441-3461 (2014)
[22] Tootkaboni, M.; Asadpoure, A.; Guest, J. K., Topology optimization of continuum structures under uncertainty-A polynomial chaos approach, Comput. Methods Appl. Mech. Engrg., 201, 263-275 (2012) · Zbl 1239.74081
[23] Geihe, B.; Lenz, M.; Rumpf, M.; Schultz, R., Risk averse elastic shape optimization with parametrized fine scale geometry, Math. Program., 141, 1-2, 383 (2013) · Zbl 1280.90090
[24] Loève, M., Probability Theory. I, (Graduate Texts in Mathematics, Vol. 45 (1977), Springer-Verlag, New York-Heidelberg), xvii+425, 0651017 · Zbl 0359.60001
[25] Lord, G. J.; Powell, C. E.; Shardlow, T., An introduction to computational stochastic PDEs, (Cambridge Texts in Applied Mathematics (2014), Cambridge University Press: Cambridge University Press New York), xii+503, 3308418 · Zbl 1327.60011
[26] Rubino, G.; Tuffin, B., Rare Event Simulation Using Monte Carlo Methods (2009), John Wiley & Sons · Zbl 1159.65003
[27] L’ecuyer, P.; Demers, V.; Tuffin, B., Rare events, splitting, and quasi-Monte Carlo, ACM Trans. Model. Comput. Simul. (TOMACS), 17, 2, 9 (2007) · Zbl 1281.62085
[28] Ciarlet, P. G., Mathematical Elasticity, Vol. I, Volume 20 of Studies in Mathematics and its Applications, ((1988), North-Holland Publishing Co.: North-Holland Publishing Co. Amsterdam) · Zbl 0648.73014
[29] Brenner, S. C.; Scott, L. R., The mathematical theory of finite element methods, (Texts in Applied Mathematics, Vol. 15 (2002), Springer-Verlag: Springer-Verlag New York), xvi+361 · Zbl 1012.65115
[30] Braess, D., Finite Elements, xviii+365 (2007), Cambridge University Press: Cambridge University Press Cambridge, Theory, fast solvers, and applications in elasticity theory, Translated from the German by Larry L. Schumaker · Zbl 1118.65117
[31] Kouri, D. P.; Surowiec, T. M., Risk-averse PDE-constrained optimization using the conditional value-at-risk, SIAM J. Optim., 26, 1, 365-396 (2016) · Zbl 1337.49049
[32] Rockafellar, R. T.; Uryasev, S., Conditional value-at-risk for general loss distributions, J. Bank. Finance, 26, 7, 1443-1471 (2002)
[33] FEniCS project - Automated solution of differential equations by the finite element method. http://fenicsproject.org; FEniCS project - Automated solution of differential equations by the finite element method. http://fenicsproject.org
[34] Alns, M. S.; Blechta, J.; Hake, J.; Johansson, A.; Kehlet, B.; Logg, A.; Richardson, C.; Ring, J.; Rognes, M. E.; Wells, G. N., The FEniCS project -version 1.5, Arch. Numer. Softw., 3, 100 (2015)
[35] Logg, A.; Mardal, K.-A.; Wells, G. N., Automated Solution of Differential Equations by the Finite Element Method (2012), Springer · Zbl 1247.65105
[36] S. Balay, S. Abhyankar, M.F. Adams, J. Brown, P. Brune, K. Buschelman, L. Dalcin, V. Eijkhout, W.D. Gropp, D. Kaushik, M.G. Knepley, L.C. McInnes, K. Rupp, B.F. Smith, S. Zampini, H. Zhang, H. Zhang, (2016) PETSc Web page, http://www.mcs.anl.gov/petsc; S. Balay, S. Abhyankar, M.F. Adams, J. Brown, P. Brune, K. Buschelman, L. Dalcin, V. Eijkhout, W.D. Gropp, D. Kaushik, M.G. Knepley, L.C. McInnes, K. Rupp, B.F. Smith, S. Zampini, H. Zhang, H. Zhang, (2016) PETSc Web page, http://www.mcs.anl.gov/petsc
[37] S. Balay, S. Abhyankar, M.F. Adams, J. Brown, P. Brune, K. Buschelman, L. Dalcin, V. Eijkhout, W.D. Gropp, D. Kaushik, M.G. Knepley, L.C. McInnes, K. Rupp, B.F. Smith, S. Zampini, H. Zhang, H. Zhang, (2016) PETSc Users Manual ANL-95/11 - Revision 3.7, Argonne National Laboratory http://www.mcs.anl.gov/petsc; S. Balay, S. Abhyankar, M.F. Adams, J. Brown, P. Brune, K. Buschelman, L. Dalcin, V. Eijkhout, W.D. Gropp, D. Kaushik, M.G. Knepley, L.C. McInnes, K. Rupp, B.F. Smith, S. Zampini, H. Zhang, H. Zhang, (2016) PETSc Users Manual ANL-95/11 - Revision 3.7, Argonne National Laboratory http://www.mcs.anl.gov/petsc
[38] Balay, S.; Gropp, W. D.; McInnes, L. C.; Smith, B. F., Efficient management of parallelism in object oriented numerical software libraries, (Arge, E.; Bruaset, A. M.; Langtangen, H. P., Modern Software Tools in Scientific Computing (1997), Birkhäuser Press), 163-202 · Zbl 0882.65154
[39] Davis, T. A., Algorithm 832: UMFPACK V4.3 —an unsymmetric-pattern multifrontal method, ACM Trans. Math. Softw. (TOMS), 30, 2, 196-199 (2004) · Zbl 1072.65037
[40] G. Varoquaux, et al., Joblib: running python functions as pipeline jobs. 2010-2016 https://pythonhosted.org/joblib; G. Varoquaux, et al., Joblib: running python functions as pipeline jobs. 2010-2016 https://pythonhosted.org/joblib
[41] Dörfler, W., A convergent adaptive algorithm for poisson’s equation, SIAM J. Numer. Anal., 33, 3, 1106-1124 (1996) · Zbl 0854.65090
[42] D. Kuzmin, Introduction to CFD, University Lecture TU Dortmund, 2007.; D. Kuzmin, Introduction to CFD, University Lecture TU Dortmund, 2007.
[43] M. Eigel, R. Schneider, J. Neumann, S. Wolf, Non-intrusive tensor reconstruction for high dimensional random PDEs, 2444, WIAS Preprint, 2017.; M. Eigel, R. Schneider, J. Neumann, S. Wolf, Non-intrusive tensor reconstruction for high dimensional random PDEs, 2444, WIAS Preprint, 2017.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.