×

Topology optimization with geometric uncertainties by perturbation techniques. (English) Zbl 1242.74075

Summary: The aim of this paper was to present a topology optimization methodology for obtaining robust designs insensitive to small uncertainties in the geometry. The variations are modeled using a stochastic field. The model can represent spatially varying geometry imperfections in devices produced by etching techniques. Because of under-etching or over-etching parts of the structure may become thinner or thicker than a reference design supplied to the manufacturer. The uncertainties are assumed to be small and their influence on the system response is evaluated using perturbation techniques. Under the above assumptions, the proposed algorithm provides a computationally cheap alternative to previously introduced stochastic optimization methods based on Monte Carlo sampling. The method is demonstrated on the design of a minimum compliance cantilever beam and a compliant mechanism.

MSC:

74P15 Topological methods for optimization problems in solid mechanics
74G10 Analytic approximation of solutions (perturbation methods, asymptotic methods, series, etc.) of equilibrium problems in solid mechanics
74S60 Stochastic and other probabilistic methods applied to problems in solid mechanics

Software:

top88.m; MUMPS
Full Text: DOI

References:

[1] Schueller, Computational methods im optimization considering uncertainties - An overview, Computer Methods in Applied Mechanics and Engineering 198 pp 2– (2008) · Zbl 1194.74258 · doi:10.1016/j.cma.2008.05.004
[2] Structural Design Optimization Considering Uncertainties 1 (2008)
[3] Beyer, Robust optimization - a comprehensive survey, Computer Methods in Applied Mechanics and Engineering 196 (33-34) pp 3190– (2007) · Zbl 1173.74376 · doi:10.1016/j.cma.2007.03.003
[4] Ben-Tal, Robust truss topology design via semidefinite programming, SIAM Journal on Optimization 7 (4) pp 991– (1997) · Zbl 0899.90133 · doi:10.1137/S1052623495291951
[5] Guest, Structural optimization under uncertain loads and nodal locations, Computer Methods in Applied Mechanics and Engineering 198 (1) pp 116– (2008) · Zbl 1194.74238 · doi:10.1016/j.cma.2008.04.009
[6] Logo, Optimal topologies in case of probabilistic loading: The influence of load correlation, Mechanics Based Design of Structures and Machines 37 (3) pp 327– (2009) · doi:10.1080/15397730902936328
[7] Kogiso, Robust topology optimization for compliant mechanisms considering uncertainty of applied loads, Journal of Advanced Mechanical Design Systems and Manifacturing 2 (1) pp 96-107– (2008)
[8] De Gournay, Shape and topology optimization of the robust compliance via the level set method, ESAIM- Control Optimization and Calculus of Variations 14 (1) pp 43-70– (2008) · Zbl 1245.49054 · doi:10.1051/cocv:2007048
[9] Seepersad, Robust design of cellular materials with topological and dimensional imperfections, Journal of Mechanical Design, Transactions of the ASME 128 (6) pp 1285– (2006) · doi:10.1115/1.2338575
[10] Doltsinis, Robust design of non-linear structures using optimization methods, Computer Methods in Applied Mechanics and Engineering 194 pp 1779– (2005) · Zbl 1083.74041 · doi:10.1016/j.cma.2004.02.027
[11] Calafiore, Optimization under uncertainty with applications to design of truss structures, Structural and Multidisciplinary Optimization 35 (3) pp 189– (2008) · Zbl 1273.74374 · doi:10.1007/s00158-007-0145-z
[12] Asadpoure, Robust topology optimization of structures with uncertainties in stiffness - application to truss structures, Computers & Structures 89 (11-12) pp 1131-1141– (2011) · doi:10.1016/j.compstruc.2010.11.004
[13] Chen, Level set based robust shape and topology optimization under random field uncertainties, Structural and Multidisciplinary Optimization 41 (4) pp 507– (2010) · Zbl 1274.74323 · doi:10.1007/s00158-009-0449-2
[14] Bendsøe, Topology Optimization - Theory, Methods and Applications (2004) · Zbl 1059.74001
[15] Bruns, Topology optimization of non-linear elastic structures and compliant mechanisms, Computer Methods in Applied Mechanics and Engineering 190 (26-27) pp 3443– (2001) · Zbl 1014.74057 · doi:10.1016/S0045-7825(00)00278-4
[16] Bourdin, Filters in topology optimization, International Journal for Numerical Methods in Engineering 50 (9) pp 2143– (2001) · Zbl 0971.74062 · doi:10.1002/nme.116
[17] Guest, Achieving minimum length scale in topology optimization using nodal design variables and projection functions, International Journal for Numerical Methods in Engineering 61 (2) pp 238– (2004) · Zbl 1079.74599 · doi:10.1002/nme.1064
[18] Sigmund, Morphology-based black and white filters for topology optimization, Structural and Multidisciplinary Optimization 33 pp 401– (2007) · doi:10.1007/s00158-006-0087-x
[19] Xu, Volume preserving nonlinear density filter based on heaviside functions, Structural and Multidisciplinary Optimization 41 pp 1615– (2010) · Zbl 1274.74419 · doi:10.1007/s00158-009-0452-7
[20] Sigmund, Manufacturing tolerant topology optimization, Acta Mechanica Sinica 25 (2) pp 227– (2009) · Zbl 1270.74165 · doi:10.1007/s10409-009-0240-z
[21] Wang, On projection methods, convergence and robust formulations in topology optimization, Structural and Multidisciplinary Optimization (2011) · Zbl 1274.74409 · doi:10.1007/s00158-010-0602-y
[22] Lazarov, Robust design of large-displacement compliant mechanisms, Mechanical Sciences 2 (2) pp 175– (2011) · doi:10.5194/ms-2-175-2011
[23] Schevenels, Robust topology optimization accounting for spatially varying manufacturing errors, Computer Methods in Applied Mechanics and Engineering 200 (49-52) pp 3613– (2011) · Zbl 1239.74080 · doi:10.1016/j.cma.2011.08.006
[24] Chen, A new level-set based approach to shape and topology optimization under geometric uncertainty, Structural and Multidisciplinary Optimization 44 pp 1– (2011) · Zbl 1274.49056 · doi:10.1007/s00158-011-0660-9
[25] Liu, Random field finite elements, International Journal for Numerical Methods in Engineering 23 (10) pp 1831– (1986) · Zbl 0597.73075 · doi:10.1002/nme.1620231004
[26] Kleiber, The Stochastic Finite Element Method: Basic Perturbation Technique and Computer Implementation (1992) · Zbl 0902.73004
[27] Lazarov, Filters in topology optimization based on Helmholtz-type differential equations, International Journal for Numerical Methods in Engineering 86 (6) pp 765– (2011) · Zbl 1235.74258 · doi:10.1002/nme.3072
[28] Kawamoto, Heaviside projection based topology optimization by a PDE-filtered scalar function, Structural and Multidisciplinary Optimization 44 pp 19– (2011) · Zbl 1274.74349 · doi:10.1007/s00158-010-0562-2
[29] Andreassen, Efficient topology optimization in MATLAB using 88 lines of code, Structural and Multidisciplinary Optimization 43 pp 1– (2011) · Zbl 1274.74310 · doi:10.1007/s00158-010-0594-7
[30] Ghanem, Stochastic Finite Elements - A Spectral Approach (2003)
[31] Zhang, Orthogonal series expansions of random fields in first-order reliability analysis, Journal of Engineering Mecanics-ASCE 120 (12) pp 2660-2677– (1994)
[32] Li, Optimal discretization of random fields, Journal of Engineering Mechanics - ASCE 119 pp 1136– (1993) · doi:10.1061/(ASCE)0733-9399(1993)119:6(1136)
[33] Grigoriu, Simulation of stationary non-Gaussian translation processes, Journal of Engineering Mechanics - ASCE 124 (2) pp 121-126– (1998) · doi:10.1061/(ASCE)0733-9399(1998)124:2(121)
[34] Sudret B Der Kiureghian A Stochastic Finite Elements and Reliability - A state-of-the-art report Technical Report UCB/SEMM-2000/08 2000
[35] Svanberg, The method of moving asymptotes - a new method for structural optimization, International Journal for Numerical Methods in Engineering 24 pp 359– (1987) · Zbl 0602.73091 · doi:10.1002/nme.1620240207
[36] Lazarov BS Augarde CE Object oriented design of parallel and sequential finite element codes Proceedings of the 13th ACME Conference 2005
[37] Amestoy, Multifrontal parallel distributed symmetric and unsymmetric solvers, Computer Methods in Applied Mechanics and Engineering 184 (2-4) pp 501– (2000) · Zbl 0956.65017 · doi:10.1016/S0045-7825(99)00242-X
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.