×

Deformable micro-continua in which quantum mysteries reside. (English) Zbl 1431.74017

Summary: Deformable micro-continua of highly localized nature are found to exactly exhibit all quantum effects commonly known for quantum entities at microscopic scale. At every instant, the spatial configuration of each such micro-continuum is prescribed by four spatial distributions of the mass, the velocity, the internal stress, and the intrinsic angular momentum. The deformability features of such micro-continua in response to all configuration changes are identified with a constitutive equation that specifies how the internal stress responds to the mass density field. It is shown that these microcontinua are endowed with the following unique response features: (i) the coupled system of the nonlinear field equations governing their dynamic responses to any given force and torque fields is exactly reducible to a linear dynamic equation governing a complex field variable; (ii) this fundamental dynamic equation and this complex field variable are just the Schrödinger equation and the complex wave function in quantum theory; and, accordingly, (iii) the latter two and all quantum effects known for quantum entities are in a natural and unified manner incorporated as the inherent response features of the micro-continua discovered, thus following objective and deterministic response patterns for quantum entities, in which the physical origins and meanings of the wave function and the Schrödinger equation become self-evident and, in particular, any probabilistic indeterminacy becomes irrelevant.

MSC:

74A99 Generalities, axiomatics, foundations of continuum mechanics of solids
81P05 General and philosophical questions in quantum theory
Full Text: DOI

References:

[1] MEHRA, J. and RECHENBERG, H. The Historical Development of Quantum Theory, Vols. I-VI, Springer, Berlin (2000) · Zbl 1041.81004
[2] Planck, M., Über das Gesetz der energieverteilung im normalspektrum, Annalen der Physik, 309, 553-563 (1901) · JFM 32.0913.05 · doi:10.1002/andp.19013090310
[3] Einstein, A., Über einen die Erzeugung und Verwandlung des Lichtes betrefenden heuristischen Gesichtspunkt, Annalen der Physik, 322, 132-148 (1905) · JFM 36.0883.01 · doi:10.1002/andp.19053220607
[4] Bohr, N., On the constitution of atoms and molecules: Part I, Philosophical Magazine, 26, 1-24 (1913) · JFM 44.0897.01
[5] Bohr, N., On the constitution of atoms and molecules: Part II, Philosophical Magazine, 26, 476-502 (1913) · JFM 44.0897.01
[6] Bohr, N., On the constitution of atoms and molecules: Part III, Philosophical Magazine, 26, 857-875 (1913) · JFM 44.0897.01
[7] De Broglie, L., Recherches sur la thèorie des quanta, Annales de Physique, 3, 22-128 (1925) · JFM 51.0729.03 · doi:10.1051/anphys/192510030022
[8] Heisenberg, , W., Über die quantentheoretische umdeutung kinematischer und mechanischer Bezieungen, Zeitschrift für Physik, 33, 879-893 (1925) · JFM 51.0728.07 · doi:10.1007/BF01328377
[9] Dirac, P. A M., The fundamental equations of quantum mechanics, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 109, 642-653 (1925) · JFM 51.0729.01 · doi:10.1098/rspa.1925.0150
[10] Born, M.; Jordan, P., Zur quantenmechanik: I, Zeitschrift für Physik, 34, 858-888 (1925) · JFM 51.0728.08 · doi:10.1007/BF01328531
[11] Born, M.; Heisenberg, W.; Jordan, P., Zur quantenmechanik: II, Zeitschrift für Physik, 35, 557-615 (1926) · JFM 52.0963.01 · doi:10.1007/BF01379806
[12] Born, M., Zur quantenmechanik der Stoßvorgänge, Zeitschrift für Physik, 37, 863-867 (1926) · JFM 52.0973.03 · doi:10.1007/BF01397477
[13] Schrödinger, E., Quantisierung als eigenwertproblem: I, Annalen der Physik, 79, 361-376 (1926) · JFM 52.0965.08 · doi:10.1002/andp.19263840404
[14] Schrödinger, E., Quantisierung als eigenwertproblem: II, Annalen der Physik, 79, 489-527 (1926) · JFM 52.0966.01 · doi:10.1002/andp.19263840602
[15] Schrödinger, E., Quantisierung als eigenwertproblem: III, Annalen der Physik, 80, 437-490 (1926) · JFM 52.0966.02 · doi:10.1002/andp.19263851302
[16] Schrödinger, E., Quantisierung als eigenwertproblem: IV, Annalen der Physik, 81, 109-139 (1926) · JFM 52.0966.03 · doi:10.1002/andp.19263861802
[17] Schrödinger, E., Über das Verhältnis der Heisenberg-Born-Jordanschen quantenmechanik zu der meinen, Annalen der Physik, 79, 734-756 (1926) · JFM 52.0967.02 · doi:10.1002/andp.19263840804
[18] Schrödinger, E., Der stetige Übergang von der mikro-zur makromechanik, Die Naturwissenschaften, 14, 664-666 (1926) · JFM 52.0967.01 · doi:10.1007/BF01507634
[19] Heisenberg, W., Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik, Zeitschrift für Physik, 43, 172-198 (1927) · JFM 53.0853.05 · doi:10.1007/BF01397280
[20] Hencky, H., Über die Form des Elastizitätsgesetzes bei ideal elastischen Stoffen, Zeitschrift für Technische Physik, 9, 215-220 (1928) · JFM 54.0851.03
[21] Hencky, H., Welche Umstände bedingen die Verfestigung bei der bildsamen Verformung von festen isotropen Körpern?, Zeitschrift für Physik, 55, 145-155 (1929) · JFM 55.1107.01 · doi:10.1007/BF01342409
[22] Hencky, H., No article title, Das Superpositionsgesetz eines endlich deformierten relaxationsfäigen elastischen Kontinuums und seine Bedeutung für eine exakte Ableitung der Gleichungen für die zähe Flüssigkeit in der Eulerschen Form. Annalen der Physik, 5, 617-630 (1929) · JFM 55.1106.04
[23] Richter, H., Das isotrope Elastizitätsgesetz, Zeitschrift für Angewandte Mathematik und Mechanik, 28, 202-209 (1948) · Zbl 0033.22402
[24] Richter, H., Verzerrungstensor, Verzerrungsdeviator und Spannungstensor bei endlichen Formänderungen, Zeitschrift für Angewandte Mathematik und Mechanik, 29, 65-75 (1949) · Zbl 0031.42603 · doi:10.1002/zamm.19490290301
[25] Hill, R., On constitutive inequalities for simple materials, Journal of the Mechanics and Physics of Solids, 16, 229-242 (1968) · Zbl 0162.28702 · doi:10.1016/0022-5096(68)90031-8
[26] Hill, R., Constitutive inequalities for isotropic elastic solids at finite strain, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 326, 131-147 (1970) · Zbl 0229.73004 · doi:10.1098/rspa.1972.0001
[27] Anand, L., On H, Hencky’s approximate strain-energy function for moderate deformations. Journal of Applied Mechanics, 46, 78-82 (1979) · Zbl 0405.73032
[28] Fitzjerald, S., A tensorial Hencky measure of strain and strain rate for finite deformation, Journal of Applied Physics, 51, 5111-5115 (1980) · doi:10.1063/1.327428
[29] Xiao, H.; Bruhns, O.; Meyers, A., Logarithmic strain, logarithmic spin and logarithmic rate, Acta Mechanica, 124, 89-105 (1997) · Zbl 0909.73006 · doi:10.1007/BF01213020
[30] Xiao, H.; Bruhns, O. T.; Meyers, A., Hypoelasticity model based upon the logarithmic stress rate, Journal of Elasticity, 47, 51-68 (1998) · Zbl 0888.73011 · doi:10.1023/A:1007356925912
[31] Xiao, H.; Bruhns, O.; Meyers, A., Existence and uniqueness of the integrable-exactly hypoelastic equation (xxx) and its significance to finite inelasticity, Acta Mechanica, 138, 31-50 (1999) · Zbl 0978.74011 · doi:10.1007/BF01179540
[32] Xiao, H.; Bruhns, O.; Meyers, A., The choice of objective rates in finite elastoplasticity: general results on the uniqueness of the logarithmic rate, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 456, 1865-1882 (2000) · Zbl 1046.74010 · doi:10.1098/rspa.2000.0591
[33] Xiao, H.; Chen, L. S., Hencky’s elasticity model and linear stress-strain relations in isotropic finite hyperelasticity, Acta Mechanica, 157, 51-60 (2002) · Zbl 1068.74008 · doi:10.1007/BF01182154
[34] Xiao, H.; Chen, L. S., Hencky’s logarithmic strain measure and dual stress-strain and strainstress relations in isotropic finite hyperelasticity, International Journal of Solids and Structures, 40, 1455-1463 (2003) · Zbl 1032.74517 · doi:10.1016/S0020-7683(02)00653-4
[35] Bruhns, O.; Xiao, H.; Meyers, A., Constitutive inequalities for an isotropic elastic strainenergy function based upon Hencky’s logarithmic strain tensor, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 457, 2207-2226 (2001) · Zbl 1048.74505 · doi:10.1098/rspa.2001.0818
[36] Xiao, H.; Bruhns, O.; Meyers, A., Thermodynamic laws and consistent Eulerian formulation of finite elastoplasticity with thermal effects, Journal of the Mechanics and Physics of Solids, 55, 338-365 (2007) · Zbl 1419.74079 · doi:10.1016/j.jmps.2006.07.005
[37] Neff, P.; Eidel, B.; Martin, R. J., Geometry of logarithmic strain measures in solid mechanics, Archive for Rational Mechanics and Analysis, 222, 507-572 (2016) · Zbl 1348.74039 · doi:10.1007/s00205-016-1007-x
[38] Xiao, H., Hencky strain and Hencky model: extending history and ongoing tradition, Multidiscipline Modeling in Materials and Structures, 1, 1-52 (2005) · doi:10.1163/1573611054455148
[39] Xiao, H.; Bruhns, O.; Meyers, A., Elastoplasticity beyond small deformations, Acta Mechanica, 182, 31-111 (2006) · Zbl 1116.74005 · doi:10.1007/s00707-005-0282-7
[40] BAGGOTT, J. Beyond Measure: Modern Physics, Philosophy and the Meaning of Quantum Mechanics, Oxford University Press, Oxford (2004)
[41] ROSENBLUM, B. and KUTTNER, F. Quantum Enigma, Oxford University Press, Oxford (2011)
[42] WEINBERG, S. Dreams of a Final Theory, Vaintage, London (1994) · doi:10.1119/1.17723
[43] SMOLIN, L. The Trouble with Physics, Spin Networks Ltd., New York (2006) · Zbl 1195.81003
[44] DIRAC, P. A. M. Directions in Physics, John Wiley and Sons, Inc., New York (1978)
[45] BELL, J. S. Speakable and Unspeakable in Quantum Mechanics, Cambridge University Press, Cambridge (1987) · Zbl 1239.81001
[46] LEGGETT, A. J. The Problems of Physics, Oxford University Press, Oxford (1987)
[47] T’HOOFT, G. The Cellular Automaton Interpretation of Quantum Mechanics, Springer International Publishing, New York (2015)
[48] Weinberg, S., The trouble with quantum mechanics, New York Review of Books, 64, 51-53 (2017)
[49] DE BROGLIE, L. Ondes et Mouvements, Gautier-Villars, Paris (1926) · JFM 52.0941.05
[50] DE BROGLIE, L. An Introduction to the Study of Wave Mechanics, Methuen, London (1930) · JFM 56.0746.02
[51] Bohm, D., A suggested interpretation of the quantum theory in terms of hidden variables, I and II, Physical Review, 85, 166-193 (1952) · Zbl 0046.21004 · doi:10.1103/PhysRev.85.166
[52] BOHM, D. and HILEY, B. J. The Undivided Universe: An Ontological Interpretation of Quantum Mechanics, Routledge, London (1993)
[53] Berndl, K.; Daumer, M.; Dürr, D.; Goldstein, S.; Zanghi, N., A survey on Bohmian mechanics, Nuovo Cimento, B110, 737-750 (1995) · doi:10.1007/BF02741477
[54] CUSHING, J. T., FINE, A., and GOLDSTEINI, S. Bohmian Mechanics and Quantum Theory: an Appraisal, Springer, Dordrecht (1996) · doi:10.1007/978-94-015-8715-0
[55] SEWELL, G. Quantum Mechanics and Its Emergent Macrophysics, Princeton University Press, New Jersey (2002) · Zbl 1007.82001
[56] ADLER, S. L. Quantum Theory as an Emergent Phenomenon, Cambridge University Press, Cambridge (2004) · Zbl 1171.81301 · doi:10.1017/CBO9780511535277
[57] T’hooft, G., Emergent quantum mechanics and emergent symmetries, AIP Conference Proceedings, 957, 154 (2007) · Zbl 1180.81101 · doi:10.1063/1.2823751
[58] Xiao, H., Quantum enigma hidden in continuum mechanics, Applied Mathematicsand Mechanics (English Edition), 381, 39-56 (2017) · Zbl 1358.74005 · doi:10.1007/s10483-017-2151-6
[59] Xiao, H., Deformable media with quantized effects, Journal of Astrophysics and Aerospace Technology, 5, 87 (2017)
[60] Madelung, E., Quantumtheorie in hydrodynamische form, Zeitschrift für Physik, 40, 322-326 (1926) · JFM 52.0969.06 · doi:10.1007/BF01400372
[61] HOLLAND, P. The Quantum Theory of Motion, Cambridge University Press, Cambridge (1993) · Zbl 0854.00009 · doi:10.1017/CBO9780511622687
[62] Bush, J. W M., Pilot-wave hydrodynamics, Annual Review of Fluid Mechanics, 47, 269-292 (2015) · doi:10.1146/annurev-fluid-010814-014506
[63] Zhang, Y. Y.; LI, H.; YIN, Z. N.; Xiao, H., Further study of rubber-like elasticity: elastic potentials matching biaxial data, Applied Mathematicsand Mechanics (English Edition), 351, 13-24 (2014) · doi:10.1007/s10483-014-1768-x
[64] Yu, L. D.; JIN, T. F.; YIN, Z. N.; Xiao, H., Multi-axial strain-stiffening elastic potentials with energy bounds: explicit approach based on uniaxial data, Applied Mathematicsand Mechanics (English Edition), 367, 883-894 (2015) · doi:10.1007/s10483-015-1955-9
[65] Dirac, P. A M., Relativity and quantum mechanics, Fields and Quanta, 3, 139-164 (1972)
[66] Yang, C. N., Square root of minus one, complex phases and Erwin Schrödinger, 53-64 (1987), Cambridge · doi:10.1017/CBO9780511564253.006
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.