×

On the coarse geometry of certain right-angled Coxeter groups. (English) Zbl 1515.20232

Summary: Let \(\Gamma\) be a connected, triangle-free, planar graph with at least five vertices that has no separating vertices or edges. If the graph \(\Gamma\) is \(\mathcal{CFS}\), we prove that the right-angled Coxeter group \(G_\Gamma\) is virtually a Seifert manifold group or virtually a graph manifold group and we give a complete quasi-isometry classification of these groups. Furthermore, we prove that \(G_\Gamma\) is hyperbolic relative to a collection of \(\mathcal{CFS}\) right-angled Coxeter subgroups of \(G_\Gamma\). Consequently, the divergence of \(G_\Gamma\) is linear, quadratic or exponential. We also generalize right-angled Coxeter groups which are virtually graph manifold groups to certain high-dimensional right-angled Coxeter groups (our families exist in every dimension) and study the coarse geometry of this collection. We prove that strongly quasiconvex, torsion-free, infinite-index subgroups in certain graph of groups are free and we apply this result to our right-angled Coxeter groups.

MSC:

20F65 Geometric group theory
20F55 Reflection and Coxeter groups (group-theoretic aspects)
20F67 Hyperbolic groups and nonpositively curved groups
05C25 Graphs and abstract algebra (groups, rings, fields, etc.)

References:

[1] 10.1007/s00208-011-0641-8 · Zbl 1251.20036 · doi:10.1007/s00208-011-0641-8
[2] 10.1215/ijm/1446819294 · doi:10.1215/ijm/1446819294
[3] 10.1007/s00208-008-0317-1 · Zbl 1220.20037 · doi:10.1007/s00208-008-0317-1
[4] 10.2140/agt.2017.17.705 · Zbl 1435.20051 · doi:10.2140/agt.2017.17.705
[5] 10.4171/GGD/100 · Zbl 1226.20033 · doi:10.4171/GGD/100
[6] 10.1215/S0012-7094-08-14121-3 · Zbl 1194.20045 · doi:10.1215/S0012-7094-08-14121-3
[7] 10.2140/iig.2009.10.15 · doi:10.2140/iig.2009.10.15
[8] 10.1112/jtopol/jtu017 · Zbl 1367.20043 · doi:10.1112/jtopol/jtu017
[9] 10.4171/GGD/429 · Zbl 1423.20043 · doi:10.4171/GGD/429
[10] 10.1112/jlms.12042 · Zbl 1475.20069 · doi:10.1112/jlms.12042
[11] 10.4171/GGD/469 · Zbl 1456.20039 · doi:10.4171/GGD/469
[12] 10.1090/S0002-9947-2014-06218-1 · Zbl 1368.20049 · doi:10.1090/S0002-9947-2014-06218-1
[13] 10.1112/topo.12033 · Zbl 1481.20148 · doi:10.1112/topo.12033
[14] ; Davis, The geometry and topology of Coxeter groups. London Mathematical Society Monographs Series, 32 (2008) · Zbl 1142.20020
[15] 10.1016/S0022-4049(99)00175-9 · Zbl 0982.20022 · doi:10.1016/S0022-4049(99)00175-9
[16] 10.2140/gt.2001.5.7 · Zbl 1118.58300 · doi:10.2140/gt.2001.5.7
[17] 10.1016/j.top.2005.03.003 · Zbl 1101.20025 · doi:10.1016/j.top.2005.03.003
[18] 10.2140/agt.2015.15.2839 · Zbl 1364.20027 · doi:10.2140/agt.2015.15.2839
[19] 10.1007/BF01896656 · Zbl 0841.57023 · doi:10.1007/BF01896656
[20] 10.1007/BF01898360 · Zbl 0809.53054 · doi:10.1007/BF01898360
[21] ; Gordon, Bol. Soc. Mat. Mexicana, 10, 193 (2004) · Zbl 1100.57001
[22] 10.1007/s000390050076 · Zbl 0915.57009 · doi:10.1007/s000390050076
[23] 10.1142/S0218196719500346 · Zbl 1479.20030 · doi:10.1142/S0218196719500346
[24] 10.2140/agt.2018.18.1633 · Zbl 1494.20062 · doi:10.2140/agt.2018.18.1633
[25] 10.2140/gt.2019.23.1173 · Zbl 1515.20249 · doi:10.2140/gt.2019.23.1173
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.