×

Fuzzy solution of homogeneous heat equation having solution in Fourier series form. (English) Zbl 1483.35334

Summary: While solving practical problems, we often come across situations where the system involves fuzziness. The mathematical models resulting in partial differential equations, involve fuzzy parameters and variables. In available literature, methods are presented mainly for solving non-homogeneous fuzzy partial differential equations (see [T. Allah Viranloo, Comput. Methods Appl. Math. 2, No. 3, 233–242 (2002; Zbl 1011.65077); with N. Taheri, Int. J. Contemp. Math. Sci. 4, No. 1–4, 105–114 (2009; Zbl 1181.35314); with M. A. Kermani, Iran. J. Fuzzy Syst. 7, No. 3, 33–50 (2010; Zbl 1262.65142); with S. Abbasbandy and H. Rouhparvar, “The exact solutions of fuzzy wave-like equations with variable coefficients by a variational iteration method”, Appl. Soft Comput. 11, No. 2, 2186–2192 (2011; doi:10.1016/j.asoc.2010.07.018)]). We present a method to find the solution of homogeneous fuzzy heat equations with fuzzy Dirichlet boundary conditions. We consider the fuzziness in zero in the homogeneous equation as well as in the boundary conditions. The initial conditions are also in fuzzy form. Further, we study the solution of fuzzy heat equation when the fuzzy initial conditions are represent as a Fourier series.

MSC:

35R13 Fuzzy partial differential equations
35K51 Initial-boundary value problems for second-order parabolic systems
Full Text: DOI

References:

[1] Allahviranloo, T.: Difference methods for fuzzy partial differential equations. Comput. Methods Appl. Math. 2(3), 233-242 (2002) · Zbl 1011.65077 · doi:10.2478/cmam-2002-0014
[2] Allahviranloo, T., Taheri, N.: An analytic approximation to the solution of fuzzy heat equation by Adomian decomposition method. Int. J. Contemp. Math. Sci. 4(3), 105-114 (2009) · Zbl 1181.35314
[3] Allahviranloo, T., Afshar, K.M.: Numerical methods for fuzzy linear partial differential equations under new definition for derivative. Iran. J. Fuzzy Syst. 7(3), 33-50 (2010) · Zbl 1262.65142
[4] Allahviranloo, T., Gouyandeh, Z., Armand, A., Hasanoglu, A.: On fuzzy solutions for heat equation based on generalized Hukuhara differentiability. Fuzzy Sets Syst. 265, 1-23 (2015) · Zbl 1361.35204 · doi:10.1016/j.fss.2014.11.009
[5] Allahviranloo, T., Abbasbandy, S., Rouhparvar, H.: The exact solutions of fuzzy wave-like equations with variable coefficients by a variational iteration method. Appl. Soft Comput. 11, 2186-2192 (2011) · doi:10.1016/j.asoc.2010.07.018
[6] Bede, B., Gal, S.G.: Generalization of the differentiability of fuzzy-number-valued functions with applications to fuzzy differential equations. Fuzzy Sets Syst. 151, 581-599 (2005) · Zbl 1061.26024 · doi:10.1016/j.fss.2004.08.001
[7] Bertone, A.M., Jafelice, R.M., de Barros, L.C., Bassanezi, R.C.: On fuzzy solutions for partial differential equations. Fuzzy Sets Syst. 219, 68-80 (2013) · Zbl 1277.35018 · doi:10.1016/j.fss.2012.12.002
[8] Buckley, J., Feuring, T.: Introduction to fuzzy partial differential equations. Fuzzy Sets Syst. 105, 241-248 (1999) · Zbl 0938.35014 · doi:10.1016/S0165-0114(98)00323-6
[9] Chen, Y.-Y., Chang, Y.-T., Chen, B.-S.: Fuzzy solutions to partial differential equations: adaptive approach. IEEE Trans. Fuzzy Syst. 17(1), 116-127 (2009) · doi:10.1109/TFUZZ.2008.2005010
[10] Dubois, D., Prade, H.: Towards fuzzy differential calculus, part 3: differentiation. Fuzzy Sets Syst. 8, 225-233 (1982) · Zbl 0499.28009 · doi:10.1016/S0165-0114(82)80001-8
[11] Dubois, D., Prade, H.: On several definitions of the differential of a fuzzy mapping. Fuzzy Sets Syst. 24, 117-120 (1987) · Zbl 0626.26015 · doi:10.1016/0165-0114(87)90120-5
[12] Faybishenko, B.A.: Introduction to modeling of hydrogeologic systems using fuzzy partial differential equation. In: Nikravesh, M., Zadeh, L., Korotkikh, V. (eds.) Fuzzy Partial Differential Equations and Relational Equations. Studies in Fuzziness and Soft Computing, vol 142. Springer, Berlin, Heidelberg (2004) · Zbl 1124.86300
[13] Friedman, M.; Ming, M.; Kandel, A.; Ruan, Da (ed.), Fuzzy derivatives and fuzzy cauchy problems using LP metric, 57-72 (1996), Dordrecht · Zbl 0896.34002
[14] George, A.A.: Fuzzy Ostrowski type inequalities. Comput. Appl. Math. 22, 279-292 (2003) · Zbl 1213.26020
[15] George, A.A.: Fuzzy Taylor formulae. CUBO 7, 1-13 (2005) · Zbl 1104.26021
[16] Goetschel, R., Voxman, W.: Elementary fuzzy calculus. Fuzzy Sets Syst. 18, 31-43 (1986) · Zbl 0626.26014 · doi:10.1016/0165-0114(86)90026-6
[17] Gong, Z., Yang, H.: Ill-posed fuzzy initial-boundary value problems based on generalized differentiability and regularization. Fuzzy Sets Syst. (2015). https://doi.org/10.1016/j.fss.2015.04.016 · Zbl 1375.35623 · doi:10.1016/j.fss.2015.04.016
[18] Gouyandeh, Z., Allahviranloo, T., Abbasbandy, S., Armand, A.: A fuzzy solution of heat equation under generalized Hukuhara differentiability by fuzzy Fourier transform. Fuzzy Sets Syst. 309, 81-97 (2017) · Zbl 1386.35465 · doi:10.1016/j.fss.2016.04.010
[19] Mahmoud, M.M., Iman, J.: Finite volume methods for fuzzy parabolic equations. J. Math. Comput. Sci. 2(3), 546-558 (2011) · doi:10.22436/jmcs.02.03.17
[20] Puri, M.L., Ralescu, D.A.: Differentials of fuzzy functions. J. Math. Anal. Appl. 91, 552-558 (1983) · Zbl 0528.54009 · doi:10.1016/0022-247X(83)90169-5
[21] Seikkala, S.: On the fuzzy initial value problem. Fuzzy Sets Syst. 24, 319-330 (1987) · Zbl 0643.34005 · doi:10.1016/0165-0114(87)90030-3
[22] Stefanini, L.: On the generalized LU-fuzzy derivative and fuzzy differential equations. In: Proceedings of the 2007 IEEE International Conference on Fuzzy Systems, London pp. 710-715 (2007)
[23] Stefanini, L.: A generalization of Hukuhara difference. In: Dubois, D., Lubiano, M.A., Prade, H., Gil, M.A., Grzegorzewski, P., Hryniewicz, O. (eds.) Soft Methods for Handling Variability and Imprecision. Advances in Soft Computing, vol 48. Springer, Berlin, Heidelberg (2008) · Zbl 1188.26019
[24] Stefanini, L.: A generalization of Hukuhara difference and division for interval and fuzzy arithmetic. Fuzzy Sets Syst. 161, 1564-1584 (2010) · Zbl 1188.26019 · doi:10.1016/j.fss.2009.06.009
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.