Skip to main content
Log in

Fuzzy solution of homogeneous heat equation having solution in Fourier series form

  • Published:
SeMA Journal Aims and scope Submit manuscript

Abstract

While solving practical problems, we often come across situations where the system involves fuzziness. The mathematical models resulting in partial differential equations, involve fuzzy parameters and variables. In available literature, methods are presented mainly for solving non-homogeneous fuzzy partial differential equations (see Allahviranloo in Comput Methods Appl Math 2(3):233–242, 2002; Allahviranloo and Taheri in Int J Contemp Math Sci 4(3):105–114, 2009; Allahviranloo and Afshar in Iran J Fuzzy Syst 7(3):33–50, 2010; Allahviranloo et al. in Appl Soft Comput 11:2186–2192, 2011). We present a method to find the solution of homogeneous fuzzy heat equations with fuzzy Dirichlet boundary conditions. We consider the fuzziness in zero in the homogeneous equation as well as in the boundary conditions. The initial conditions are also in fuzzy form. Further, we study the solution of fuzzy heat equation when the fuzzy initial conditions are represent as a Fourier series.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Allahviranloo, T.: Difference methods for fuzzy partial differential equations. Comput. Methods Appl. Math. 2(3), 233–242 (2002)

    Article  MathSciNet  Google Scholar 

  2. Allahviranloo, T., Taheri, N.: An analytic approximation to the solution of fuzzy heat equation by Adomian decomposition method. Int. J. Contemp. Math. Sci. 4(3), 105–114 (2009)

    MathSciNet  MATH  Google Scholar 

  3. Allahviranloo, T., Afshar, K.M.: Numerical methods for fuzzy linear partial differential equations under new definition for derivative. Iran. J. Fuzzy Syst. 7(3), 33–50 (2010)

    MathSciNet  MATH  Google Scholar 

  4. Allahviranloo, T., Gouyandeh, Z., Armand, A., Hasanoglu, A.: On fuzzy solutions for heat equation based on generalized Hukuhara differentiability. Fuzzy Sets Syst. 265, 1–23 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  5. Allahviranloo, T., Abbasbandy, S., Rouhparvar, H.: The exact solutions of fuzzy wave-like equations with variable coefficients by a variational iteration method. Appl. Soft Comput. 11, 2186–2192 (2011)

    Article  Google Scholar 

  6. Bede, B., Gal, S.G.: Generalization of the differentiability of fuzzy-number-valued functions with applications to fuzzy differential equations. Fuzzy Sets Syst. 151, 581–599 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bertone, A.M., Jafelice, R.M., de Barros, L.C., Bassanezi, R.C.: On fuzzy solutions for partial differential equations. Fuzzy Sets Syst. 219, 68–80 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. Buckley, J., Feuring, T.: Introduction to fuzzy partial differential equations. Fuzzy Sets Syst. 105, 241–248 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chen, Y.-Y., Chang, Y.-T., Chen, B.-S.: Fuzzy solutions to partial differential equations: adaptive approach. IEEE Trans. Fuzzy Syst. 17(1), 116–127 (2009)

    Article  Google Scholar 

  10. Dubois, D., Prade, H.: Towards fuzzy differential calculus, part 3: differentiation. Fuzzy Sets Syst. 8, 225–233 (1982)

    Article  MATH  Google Scholar 

  11. Dubois, D., Prade, H.: On several definitions of the differential of a fuzzy mapping. Fuzzy Sets Syst. 24, 117–120 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  12. Faybishenko, B.A.: Introduction to modeling of hydrogeologic systems using fuzzy partial differential equation. In: Nikravesh, M., Zadeh, L., Korotkikh, V. (eds.) Fuzzy Partial Differential Equations and Relational Equations. Studies in Fuzziness and Soft Computing, vol 142. Springer, Berlin, Heidelberg (2004)

  13. Friedman, M., Ming, M., Kandel, A.: Fuzzy derivatives and fuzzy cauchy problems using LP metric. In: Ruan, Da (ed.) Fuzzy Logic foundations and Applications, pp. 57–72. Kluwer, Dordrecht (1996)

    Google Scholar 

  14. George, A.A.: Fuzzy Ostrowski type inequalities. Comput. Appl. Math. 22, 279–292 (2003)

    MathSciNet  MATH  Google Scholar 

  15. George, A.A.: Fuzzy Taylor formulae. CUBO 7, 1–13 (2005)

    MathSciNet  MATH  Google Scholar 

  16. Goetschel, R., Voxman, W.: Elementary fuzzy calculus. Fuzzy Sets Syst. 18, 31–43 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  17. Gong, Z., Yang, H.: Ill-posed fuzzy initial-boundary value problems based on generalized differentiability and regularization. Fuzzy Sets Syst. (2015). https://doi.org/10.1016/j.fss.2015.04.016

    MATH  Google Scholar 

  18. Gouyandeh, Z., Allahviranloo, T., Abbasbandy, S., Armand, A.: A fuzzy solution of heat equation under generalized Hukuhara differentiability by fuzzy Fourier transform. Fuzzy Sets Syst. 309, 81–97 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  19. Mahmoud, M.M., Iman, J.: Finite volume methods for fuzzy parabolic equations. J. Math. Comput. Sci. 2(3), 546–558 (2011)

    Article  Google Scholar 

  20. Puri, M.L., Ralescu, D.A.: Differentials of fuzzy functions. J. Math. Anal. Appl. 91, 552–558 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  21. Seikkala, S.: On the fuzzy initial value problem. Fuzzy Sets Syst. 24, 319–330 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  22. Stefanini, L.: On the generalized LU-fuzzy derivative and fuzzy differential equations. In: Proceedings of the 2007 IEEE International Conference on Fuzzy Systems, London pp. 710–715 (2007)

  23. Stefanini, L.: A generalization of Hukuhara difference. In: Dubois, D., Lubiano, M.A., Prade, H., Gil, M.A., Grzegorzewski, P., Hryniewicz, O. (eds.) Soft Methods for Handling Variability and Imprecision. Advances in Soft Computing, vol 48. Springer, Berlin, Heidelberg (2008)

  24. Stefanini, L.: A generalization of Hukuhara difference and division for interval and fuzzy arithmetic. Fuzzy Sets Syst. 161, 1564–1584 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This research work is supported by National Board for Higher Mathematics (NBHM), Department of Atomic Energy (DAE), India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. M. Pirzada.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pirzada, U.M., Vakaskar, D.C. Fuzzy solution of homogeneous heat equation having solution in Fourier series form . SeMA 76, 181–194 (2019). https://doi.org/10.1007/s40324-018-0169-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40324-018-0169-x

Keywords

Mathematics Subject Classification

Navigation