×

Modelling and simulating Lenski’s long-term evolution experiment. (English) Zbl 1415.92128

Summary: We revisit the model by M. J. Wiser et al. [“Long-term dynamics of adaptation in asexual populations”, Science 342, No. 6164, 1364–1367 (2013; doi:10.1126/science.1243357)], which describes how the mean fitness increases over time due to beneficial mutations in Lenski’s long-term evolution experiment. We develop the model further both conceptually and mathematically. Conceptually, we describe the experiment with the help of a Cannings model with mutation and selection, where the latter includes diminishing returns epistasis. The analysis sheds light on the growth dynamics within every single day and reveals a runtime effect, that is, the shortening of the daily growth period with increasing fitness; and it allows to clarify the contribution of epistasis to the mean fitness curve. Mathematically, we explain rigorous results in terms of a law of large numbers (in the limit of infinite population size and for a certain asymptotic parameter regime), and present approximations based on heuristics and supported by simulations for finite populations.

MSC:

92D15 Problems related to evolution
92-04 Software, source code, etc. for problems pertaining to biology

References:

[1] Barrick, J. E.; Yu, D. S.; Yoon, S. H.; Jeong, H.; Oh, T. K.; Schneider, D.; Lenski, R. E.; Kim, J. F., Genome evolution and adaptation in a long-term experiment with Escherichia coli, Nature, 461, 1243-1247 (2009)
[2] Bürger, R., The Mathematical Theory of Selection, Recombination, and Mutation (2000), Wiley: Wiley Chichester · Zbl 0959.92018
[3] Chevin, L. M., On measuring selection in experimental evolution, Biol. Lett., 7, 210-213 (2011)
[4] Desai, M. M.; Fisher, D. S., Beneficial mutation-selection balance and the effect of linkage on positive selection, Genetics, 176, 1759-1798 (2007)
[5] Durrett, R., Probability: Theory and Examples (2005), Thomson-Brooks/Cole: Thomson-Brooks/Cole Belmont, CA · Zbl 1202.60002
[6] Durrett, R., Probability Models for DNA Sequence Evolution (2008), Springer: Springer New York · Zbl 1311.92007
[7] Durrett, R.; Mayberry, J., Travelling waves of selective sweeps, Ann. Appl. Probab., 21, 699-744 (2011) · Zbl 1219.92037
[8] Ewens, W. J., Mathematical Population Genetics (2004), Springer: Springer New York · Zbl 1060.92046
[9] Eyre-Walker, A.; Keightley, P. D., The distribution of fitness effects of new mutations, Nature Rev. Genet., 8, 610-618 (2007)
[10] Feller, W., An Introduction to Probability Theory and its Applications, Vol. I (1968), Wiley: Wiley New York · Zbl 0155.23101
[11] Feller, W., An Introduction to Probability Theory and its Applications, Vol. II (1971), Wiley: Wiley New York · Zbl 0219.60003
[12] Fisher, R., The correlation between relatives on the supposition of Mendelian inheritance, Philos. Trans. R. Soc. Edinburgh, 52, 399-433 (1918)
[13] Fogle, C. A.; Nagle, J. L.; Desai, M. M., Clonal interference, multiple mutations and adaptation in large asexual populations, Genetics, 180, 2163-2173 (2008)
[14] Georgii, H. O., Stochastics (2013), De Gruyter: De Gruyter Berlin · Zbl 1314.60001
[15] Gerrish, P. J., The rhytm of microbial adaptations, Nature, 413, 299-302 (2001)
[17] Gillespie, J. H., Molecular evolution over the mutational landscape, Evolution, 38, 1116-1129 (1984)
[18] González Casanova, A.; Kurt, N.; Wakolbinger, A.; Yuan, L., An individual-based model for the Lenski experiment, and the deceleration of the relative fitness, Stochastic Process. Appl., 126, 2211-2252 (2016) · Zbl 1358.92068
[20] Good, B. H.; McDonald, M. J.; Barrick, J. E.; Lenski, R. E.; Desai, M. M., The dynamics of molecular evolution over 60,000 generations, Nature, 551, 45-50 (2017)
[21] Graur, D.; Li, W.-H., Fundamentals of Molecular Evolution (2000)
[22] Huynen, M.; Stadler, P. F.; Fontana, W., Smoothness within ruggedness: The role of neutrality in adaptation, Proc. Natl. Acad. Sci. USA, 93, 397-401 (1996)
[24] Kryazhimskiy, S.; Tkac̆ik, G.; Plotkin, J. B., The dynamics of adaptation on correlated fitness landscapes, Proc. Natl. Acad. Sci. USA, 106, 18638-18643 (2009)
[25] LeClair, J. S.; Wahl, L. M., The impact of population bottlenecks on microbial adaptation, J. Stat. Phys., 172, 114-125 (2017) · Zbl 1396.92048
[26] Lenski, R.; Rose, M. R.; Simpson, S.; Tadler, Long term experimental evolution in Escherichia coli I. Adaptation and divergence during 2000 generations, Amer. Nat., 138, 1315-1341 (1991)
[28] Manrubia, S.; Cuesta, J. A., Evolution on neutral networks accelerates the ticking rate of the molecular clock, J. R. Soc. Interface, 12, Article 20141010 pp. (2015)
[29] Martin, G.; Roques, L., The nonstationary dynamics of fitness distributions: Asexual model with epistasis and standing variation, Genetics, 204, 1541-1558 (2016)
[30] Maynard Smith, J., What determines the rate of evolution?, Amer. Nat., 110, 331-338 (1976)
[31] McCandlish, D. M.; Stoltzfus, A., Modelling evolution using the probability of fixation: History and implications, Q. Rev. Biol., 89, 225-252 (2014)
[32] Orr, H. A., The distribution of fitness effects among beneficial mutations, Genetics, 163, 1519-1526 (2003)
[33] Park, S.-C.; Krug, J., Clonal interference in large populations, Proc. Natl. Acad. Sci. USA, 104, 18135-18140 (2007)
[34] Patwa, Z.; Wahl, L. M., The fixation probability of beneficial mutations, J. R. Soc. Interface, 5, 1279-1289 (2008)
[35] Phillips, P.; Otto, S.; Whitlock, M., Beyond the average: the evolutionary importance of gene interactions and variability of epistatic effects, (Wolf, J.; Brodie, E.; Wade, M., Epistasis and the Evolutionary Process (2000), Oxford University Press: Oxford University Press Oxford), 20-38
[36] Rozen, D. E.; de Visser, J. A.G. M.; Gerrish, P. J., Fitness effects of fixed beneficial mutations in microbial populations, Curr. Biol., 12, 1040-1045 (2002)
[37] Sanjuán, R., Mutational fitness effects in RNA and single-stranded DNA viruses: common patterns revealed by site-directed mutagenesis studies, Philos. Trans. R. Soc. B, 365, 1975-1982 (2010)
[38] Stuart, A.; Ord, K. J., (Kendall’s Advanced Theory of Statistics. Kendall’s Advanced Theory of Statistics, Distribution Theory, vol. 1 (1994), Wiley: Wiley Chichester) · Zbl 0880.62012
[39] Tenaillon, O.; Barrick, J. E.; Ribeck, N.; Deatherage, D. E.; Blanchard, J. L.; Dasgupta, A.; Wu, G. C.; Wielgoss, S.; Cruveiller, S.; Medigue, C.; Schneider, D.; Lenski, R. E., Tempo and mode of genome evolution in a 50,000-generation experiment, Nature, 536, 165-170 (2016)
[40] Wahl, L.; Gerrish, P. J.; Saika-Voivod, I., Evaluating the impact of population bottlenecks in experimental evolution, Genetics, 162, 961-971 (2002)
[41] Wahl, L.; Zhu, A. D., Survival probability of beneficial mutations in bacterial batch culture, Genetics, 200, 309-320 (2015)
[42] Wiser, M. J.; Ribeck, N.; Lenski, R. E., Data from: Long-term dynamics of adaptation in asexual populations (2013), Dryad Digital Repository
[43] Wiser, M. J.; Ribeck, N.; Lenski, R. E., Long-term dynamics of adaptation in asexual populations, Science, 342, 1364-1367 (2013)
[44] Wünsche, A.; Dinh, D. M.; Satterwhite, R. S.; Arenas, C. D.; Stoebel, D. M.; Cooper, T. F., Diminishing-returns epistasis decreases adaptability along an evolutionary trajectory, Nat. Ecol. Evol., 1, 0061 (2017)
[45] Yi, X.; Dean, A. M., Bounded population sizes, fluctuating selection and the tempo and mode of coexistence, Proc. Natl. Acad. Sci. USA, 110, 16945-16950 (2013)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.