×

Solvable cubic resonant systems. (English) Zbl 1429.83009

The authors have found a new conserved quantity for a class of nonlinear partial differential system of equations which provides resonant and periodic properties. The authors give a rigorous proof of this statement. Analogies can be found in applications of the Gross-Pitaevsky equation and nonlinear wave equations in an Anti-de Sitter spacetime. For further connections with physics, the reviewer recommends the book: [J. Liu et al., Nonlinear adiabatic evolution of quantum systems. Geometric phase and virtual magnetic monopole. Singapore: Springer (2018; Zbl 1405.81009)].

MSC:

83C15 Exact solutions to problems in general relativity and gravitational theory
83C10 Equations of motion in general relativity and gravitational theory
35L65 Hyperbolic conservation laws
35B34 Resonance in context of PDEs
35G20 Nonlinear higher-order PDEs
35L05 Wave equation
83C40 Gravitational energy and conservation laws; groups of motions
83C47 Methods of quantum field theory in general relativity and gravitational theory

Citations:

Zbl 1405.81009

References:

[1] Balasubramanian V., Buchel A., Green S.R., Lehner L., Liebling S.L.: Holographic thermalization, stability of anti-de Sitter space, and the Fermi-Pasta-Ulam paradox. Phys. Rev. Lett. 113, 071601 (2014) arXiv:1403.6471 [hep-th] · doi:10.1103/PhysRevLett.113.071601
[2] Craps B., Evnin O., Vanhoof J.: Renormalization group, secular term resummation and AdS (in)stability. JHEP 1410, 48 (2014) arXiv:1407.6273 [gr-qc] · Zbl 1333.83045 · doi:10.1007/JHEP10(2014)048
[3] Craps B., Evnin O., Vanhoof J.: Renormalization, averaging, conservation laws and AdS (in)stability. JHEP 1501, 108 (2015) arXiv:1412.3249 [gr-qc] · Zbl 1388.83214 · doi:10.1007/JHEP01(2015)108
[4] Germain P., Hani Z., Thomann L.: On the continuous resonant equation for NLS: I. Deterministic analysis. J. Math. Pures Appl. 105, 131 (2016) arXiv:1501.03760 [math.AP] · Zbl 1344.35133 · doi:10.1016/j.matpur.2015.10.002
[5] Bizoń P., Maliborski M., Rostworowski A.: Resonant dynamics and the instability of anti-de Sitter spacetime. Phys. Rev. Lett. 115, 081103 (2015) arXiv:1506.03519 [gr-qc] · doi:10.1103/PhysRevLett.115.081103
[6] Germain P., Thomann L.: On the high frequency limit of the LLL equation. Q. Appl. Math. 74, 633 (2016) arXiv:1509.09080 [math.AP] · Zbl 1348.37100 · doi:10.1090/qam/1435
[7] Bizoń P., Craps B., Evnin O., Hunik D., Luyten V., Maliborski M.: Conformal flow on S3 and weak field integrability in AdS4. Commun. Math. Phys. 353, 1179 (2017) arXiv:1608.07227 [math.AP] · Zbl 1378.35300 · doi:10.1007/s00220-017-2896-8
[8] Biasi A.F., Mas J., Paredes A.: Delayed collapses of BECs in relation to AdS gravity. Phys. Rev. E 95, 032216 (2017) arXiv:1610.04866 [nlin.PS] · doi:10.1103/PhysRevE.95.032216
[9] Biasi A., Bizoń P., Craps B., Evnin O.: Exact lowest-Landau-level solutions for vortex precession in Bose-Einstein condensates. Phys. Rev. A 96, 053615 (2017) arXiv:1705.00867 [cond-mat.quant-gas] · doi:10.1103/PhysRevA.96.053615
[10] Bizoń, P., Hunik-Kostyra, D., Pelinovsky, D.: Ground state of the conformal flow on \[{\mathbb{S}^3}\] S3. arXiv:1706.07726 [math.AP] · Zbl 1417.58021
[11] Craps B., Evnin O., Luyten V.: Maximally rotating waves in AdS and on spheres. JHEP 1709, 059 (2017) arXiv:1707.08501 [hep-th] · Zbl 1382.83083 · doi:10.1007/JHEP09(2017)059
[12] Gérard, P., Germain, P., Thomann, L.: On the cubic lowest Landau level equation. arXiv:1709.04276 [math.AP] · Zbl 1412.82034
[13] Biasi, A., Bizoń, P., Craps, B., Evnin, O.: Two infinite families of resonant solutions for the Gross-Pitaevskii equation. arXiv:1805.01775 [cond-mat.quant-gas]
[14] Biasi, A., Craps, B., Evnin, O.: Energy returns in global AdS4. arXiv:1810.04753 [hep-th]
[15] Bizoń, P., Hunik-Kostyra, D., Pelinovsky, D.: Stationary states of the cubic conformal flow on \[{\mathbb{S}^3}\] S3. arXiv:1807.00426 [math-ph] · Zbl 1441.37082
[16] Bizoń P., Rostworowski A.: On weakly turbulent instability of anti-de Sitter space. Phys. Rev. Lett. 107, 031102 (2011) arXiv:1104.3702 [gr-qc] · doi:10.1103/PhysRevLett.107.031102
[17] Craps B., Evnin O.: AdS (in)stability: an analytic approach. Fortschr. Phys. 64, 336 (2016) arXiv:1510.07836 [gr-qc] · Zbl 1339.83027 · doi:10.1002/prop.201500067
[18] Murdock, J.A.: Perturbations: Theory and Methods. SIAM, Philadelphia (1987)
[19] Kuksin, S., Maiocchi, A.: The effective equation method. In: New Approaches to Nonlinear Waves. Springer (2016) arXiv:1501.04175 [math-ph] · Zbl 1364.35336
[20] Gérard P., Grellier S.: The cubic Szegő equation. Ann. Scient. Éc. Norm. Sup 43, 761 (2010) arXiv:0906.4540 [math.CV] · Zbl 1228.35225 · doi:10.24033/asens.2133
[21] Gérard P., Grellier S.: Effective integrable dynamics for a certain nonlinear wave equation. Anal. PDE 5, 1139 (2012) arXiv:1110.5719 [math.AP] · Zbl 1268.35013 · doi:10.2140/apde.2012.5.1139
[22] Gérard P., Grellier S.: An explicit formula for the cubic Szegő equation. Trans. Am. Math. Soc. 367, 2979 (2015) arXiv:1304.2619 [math.AP] · Zbl 1318.37024 · doi:10.1090/S0002-9947-2014-06310-1
[23] Gérard, P., Grellier, S.: The cubic Szegő equation and Hankel operators. arXiv:1508.06814 [math.AP] · Zbl 1410.37001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.