×

On the undrained and drained hydraulic fracture splits. (English) Zbl 07865195

Summary: The simulation of hydraulic fracturing (HF) involves the solution of a hydro-mechanically coupled system. This article presents a new iterative sequential coupling algorithm, the undrained HF split, that improves the simulation of HFs in impermeable media. A poromechanics analogy is used to derive a stable split for the hydro-mechanically coupled system in which the mechanical subproblem is solved first. The proposed undrained HF split is applied to the simulation of cohesive HFs in an impermeable elastic medium. The cubic law is used as the constitutive model for simulating fluid flow in fractures. A minimum hydraulic aperture is assumed in the cohesive tip zone, where the mechanical aperture smoothly vanishes. While general in its nature, the undrained HF splitting scheme is employed within the context of a two-dimensional eXtended finite element model for the fractured solid, and a regular finite element model for fluid in the fracture. The undrained HF split is successfully used to simulate self-similar plane strain HFs as well as the propagation of HFs from a wellbore under anisotropic stress conditions. Fracture trajectories and local alteration of stress field are investigated. The solution of the undrained HF split converges to the same solution as the fully coupled model, whereas the commonly used \(P \rightarrow W\) sequential algorithm, referred to in this article as the drained HF split, generates spurious oscillations and fails to converge in many problems. The undrained HF split is shown to be stable and robust in applications where the drained HF split is unstable.
{© 2019 John Wiley & Sons, Ltd.}

MSC:

74Sxx Numerical and other methods in solid mechanics
74Fxx Coupling of solid mechanics with other effects
74Rxx Fracture and damage
Full Text: DOI

References:

[1] AdachiJ, SiebritsE, PeirceA, DesrochesJ. Computer simulation of hydraulic fractures. Int J Rock Mech Min Sci. 2007;44(5):739‐757. https://doi.org/10.1016/J.IJRMMS.2006.11.006 · doi:10.1016/J.IJRMMS.2006.11.006
[2] LecampionB, BungerA, ZhangX. Numerical methods for hydraulic fracture propagation: a review of recent trends. J Nat Gas Sci Eng. 2018;49:66‐83. https://doi.org/10.1016/j.jngse.2017.10.012 · doi:10.1016/j.jngse.2017.10.012
[3] SiebritsE, PeirceAP. An efficient multi‐layer planar 3D fracture growth algorithm using a fixed mesh approach. Int J Numer Methods Eng. 2002;53(3):691‐717. https://doi.org/10.1002/nme.308 · Zbl 1112.74561 · doi:10.1002/nme.308
[4] YamamotoK, ShimamotoT, SukemuraS. Multiple fracture propagation model for a three‐dimensional hydraulic fracturing simulator. Int J Geomech. 2004;4(1):46‐57. https://doi.org/10.1061/(ASCE)1532-3641(2004)4:1(46) · doi:10.1061/(ASCE)1532-3641(2004)4:1(46)
[5] LecampionB, DetournayE. An implicit algorithm for the propagation of a hydraulic fracture with a fluid lag. Comput Methods Appl Mech Eng. 2007;196(49‐52):4863‐4880. https://doi.org/10.1016/j.cma.2007.06.011 · Zbl 1173.74383 · doi:10.1016/j.cma.2007.06.011
[6] GordeliyE, DetournayE. A fixed grid algorithm for simulating the propagation of a shallow hydraulic fracture with a fluid lag. Int J Numer Anal Methods Geomech. 2011;35(5):602‐629. https://doi.org/10.1002/nag.913 · Zbl 1274.74433 · doi:10.1002/nag.913
[7] WengX, KresseO, CohenC, WuR, GuH. Modeling of hydraulic fracture network propagation in a naturally fractured formation. Paper presented at: SPE Hydraulic Fracturing Technology Conference; 2011; The Woodlands, TX. https://doi.org/10.2118/140253-MS · doi:10.2118/140253-MS
[8] ZhangX, JeffreyRG, ThiercelinM. Deflection and propagation of fluid‐driven fractures at frictional bedding interfaces: a numerical investigation. J Struct Geol. 2007;29(3):396‐410. https://doi.org/10.1016/j.jsg.2006.09.013 · doi:10.1016/j.jsg.2006.09.013
[9] ZhangX, JeffreyRG. Role of overpressurized fluid and fluid‐driven fractures in forming fracture networks. J Geochem Explor. 2014;144(Pt A):194‐207. https://doi.org/10.1016/j.gexplo.2014.03.021 · doi:10.1016/j.gexplo.2014.03.021
[10] RungamornratJ, WheelerMF, MearME. A numerical technique for simulating nonplanar evolution of hydraulic fractures. In: Proceedings of SPE Annual Technical Conference and Exhibition Society of Petroleum Engineers; 2005; Dallas, TX.
[11] ChernyS, LapinV, EsipovD, et al. Simulating fully 3D non‐planar evolution of hydraulic fractures. Int J Fract. 2016;201(2):181‐211. https://doi.org/10.1007/s10704-016-0122-x · doi:10.1007/s10704-016-0122-x
[12] SalimzadehS, PalusznyA, ZimmermanRW. Three‐dimensional poroelastic effects during hydraulic fracturing in permeable rocks. Int J Solids Struct. 2017;108:153‐163. https://doi.org/10.1016/j.ijsolstr.2016.12.008 · doi:10.1016/j.ijsolstr.2016.12.008
[13] YaoY, LiuL, KeerLM. Pore pressure cohesive zone modeling of hydraulic fracture in quasi‐brittle rocks. Mech Mater. 2015;83:17‐29. https://doi.org/10.1016/j.mechmat.2014.12.010 · doi:10.1016/j.mechmat.2014.12.010
[14] CarrierB, GranetS. Numerical modeling of hydraulic fracture problem in permeable medium using cohesive zone model. Eng Fract Mech. 2012;79:312‐328. https://doi.org/10.1016/j.engfracmech.2011.11.012 · doi:10.1016/j.engfracmech.2011.11.012
[15] SarrisE, PapanastasiouP. Modeling of hydraulic fracturing in a poroelastic cohesive formation. Int J Geomech. 2012;12(2):160‐167. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000121 · doi:10.1061/(ASCE)GM.1943-5622.0000121
[16] SarrisE, PapanastasiouP. Numerical modeling of fluid‐driven fractures in cohesive poroelastoplastic continuum. Int J Numer Anal Methods Geomech. 2013;37(12):1822‐1846. https://doi.org/10.1002/nag.2111 · doi:10.1002/nag.2111
[17] GordeliyE, PeirceA. Coupling schemes for modeling hydraulic fracture propagation using the XFEM. Comput Methods Appl Mech Eng. 2013;253:305‐322. https://doi.org/10.1016/J.CMA.2012.08.017 · Zbl 1297.74104 · doi:10.1016/J.CMA.2012.08.017
[18] GordeliyE, PeirceA. Implicit level set schemes for modeling hydraulic fractures using the XFEM. Comput Methods Appl Mech Eng. 2013;266:125‐143. https://doi.org/10.1016/j.cma.2013.07.016 · Zbl 1286.76048 · doi:10.1016/j.cma.2013.07.016
[19] GordeliyE, PeirceA. Enrichment strategies and convergence properties of the XFEM for hydraulic fracture problems. Comput Methods Appl Mech Eng. 2015;283:474‐502. https://doi.org/10.1016/j.cma.2014.09.004 · Zbl 1423.74884 · doi:10.1016/j.cma.2014.09.004
[20] LecampionB. An extended finite element method for hydraulic fracture problems. Commun Numer Methods Eng. 2009;25(2):121‐133. https://doi.org/10.1002/cnm.1111 · Zbl 1156.74043 · doi:10.1002/cnm.1111
[21] KhoeiAR, HirmandM, VahabM, BazarganM. An enriched FEM technique for modeling hydraulically driven cohesive fracture propagation in impermeable media with frictional natural faults: numerical and experimental investigations. Int J Numer Methods Eng. 2015;104(6):439‐468. https://doi.org/10.1002/nme.4944 · Zbl 1352.74185 · doi:10.1002/nme.4944
[22] FaivreM, PaulB, GolfierF, GiotR, MassinP, ColomboD. 2D coupled HM‐XFEM modeling with cohesive zone model and applications to fluid‐driven fracture network. Eng Fract Mech. 2016;159:115‐143. https://doi.org/10.1016/j.engfracmech.2016.03.029 · doi:10.1016/j.engfracmech.2016.03.029
[23] MohammadnejadT, KhoeiAR. Hydro‐mechanical modeling of cohesive crack propagation in multiphase porous media using the extended finite element method. Int J Numer Anal Methods Geomech. 2013;37(10):1247‐1279. https://doi.org/10.1002/nag.2079 · doi:10.1002/nag.2079
[24] MohammadnejadT, KhoeiAR. An extended finite element method for hydraulic fracture propagation in deformable porous media with the cohesive crack model. Finite Elem Anal Des. 2013;73:77‐95. https://doi.org/10.1016/j.finel.2013.05.005 · Zbl 1302.74167 · doi:10.1016/j.finel.2013.05.005
[25] MohammadnejadT, AndradeJE. Numerical modeling of hydraulic fracture propagation, closure and reopening using XFEM with application to in‐situ stress estimation. Int J Numer Anal Methods Geomech. 2016;40(15):2033‐2060. https://doi.org/10.1002/nag.2512 · doi:10.1002/nag.2512
[26] SalimzadehS, KhaliliN. A three‐phase XFEM model for hydraulic fracturing with cohesive crack propagation. Comput Geotech. 2015;69:82‐92. https://doi.org/10.1016/j.compgeo.2015.05.001 · doi:10.1016/j.compgeo.2015.05.001
[27] MeschkeG, LeonhartD. A generalized finite element method for hydro‐mechanically coupled analysis of hydraulic fracturing problems using space‐time variant enrichment functions. Comput Methods Appl Mech Eng. 2015;290:438‐465. https://doi.org/10.1016/j.cma.2015.03.005 · Zbl 1423.74280 · doi:10.1016/j.cma.2015.03.005
[28] GuptaP, DuarteCA. Simulation of non‐planar three‐dimensional hydraulic fracture propagation. Int J Numer Anal Methods Geomech. 2014;38(13):1397‐1430. https://doi.org/10.1002/nag.2305 · doi:10.1002/nag.2305
[29] GuptaP, DuarteCA. Coupled formulation and algorithms for the simulation of non‐planar three‐dimensional hydraulic fractures using the generalized finite element method. Int J Numer Anal Methods Geomech. 2016;40(10):1402‐1437. https://doi.org/10.1002/nag.2485 · doi:10.1002/nag.2485
[30] HeB. Hydromechanical model for hydraulic fractures using XFEM. Front Struct Civ Eng. 2019;13(1):240‐249. https://doi.org/10.1007/s11709-018-0490-6 · doi:10.1007/s11709-018-0490-6
[31] MikelićA, WheelerMF, WickT. A phase‐field method for propagating fluid‐filled fractures coupled to a surrounding porous medium. Multiscale Model Simul. 2015;13(1):367‐398. · Zbl 1317.74028
[32] MieheC, MautheS, TeichtmeisterS. Minimization principles for the coupled problem of Darcy-Biot‐type fluid transport in porous media linked to phase field modeling of fracture. J Mech Phys Solids. 2015;82:186‐217. https://doi.org/10.1016/j.jmps.2015.04.006 · doi:10.1016/j.jmps.2015.04.006
[33] MieheC, MautheS. Phase field modeling of fracture in multi‐physics problems. Part III. Crack driving forces in hydro‐poro‐elasticity and hydraulic fracturing of fluid‐saturated porous media. Comput Methods Appl Mech Eng. 2016;304:619‐655. https://doi.org/10.1016/j.cma.2015.09.021 · Zbl 1425.74423 · doi:10.1016/j.cma.2015.09.021
[34] LeeS, WheelerMF, WickT. Pressure and fluid‐driven fracture propagation in porous media using an adaptive finite element phase field model. Comput Methods Appl Mech Eng. 2016;305:111‐132. https://doi.org/10.1016/j.cma.2016.02.037 · Zbl 1425.74419 · doi:10.1016/j.cma.2016.02.037
[35] WilsonZA, LandisCM. Phase‐field modeling of hydraulic fracture. J Mech Phys Solids. 2016;96:264‐290. https://doi.org/10.1016/j.jmps.2016.07.019 · Zbl 1482.74020 · doi:10.1016/j.jmps.2016.07.019
[36] SantillánD, JuanesR, Cueto‐FelguerosoL. Phase field model of fluid‐driven fracture in elastic media: immersed‐fracture formulation and validation with analytical solutions. J Geophys Res Solid Earth. 2017;122(4):2565‐2589. https://doi.org/10.1002/2016JB013572 · doi:10.1002/2016JB013572
[37] ProfitM, DutkoM, YuJ, ColeS, AngusD, BairdA. Complementary hydro‐mechanical coupled finite/discrete element and microseismic modelling to predict hydraulic fracture propagation in tight shale reservoirs. Comput Part Mech. 2016;3(2):229‐248. https://doi.org/10.1007/s40571-015-0081-4 · doi:10.1007/s40571-015-0081-4
[38] ProfitML, DutkoM, YuJ, ArmstrongJA, ParfittD, MutluU. Application of state of the art hydraulic fracture modelling techniques for safe‐optimized design and for enhanced production. Paper presented at: 50th U.S. Rock Mechanics/Geomechanics Symposium; 2016; Houston, TX.
[39] YanC, ZhengH. Three‐dimensional hydromechanical model of hydraulic fracturing with arbitrarily discrete fracture networks using finite‐discrete element method. Int J Geomech. 2016;17(6):1‐26. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000819 · doi:10.1061/(ASCE)GM.1943-5622.0000819
[40] GhaderiA, Taheri‐ShakibJ, Sharif NikMA. The distinct element method (DEM) and the extended finite element method (XFEM) application for analysis of interaction between hydraulic and natural fractures. J Pet Sci Eng. 2018;171:422‐430. https://doi.org/10.1016/j.petrol.2018.06.083 · doi:10.1016/j.petrol.2018.06.083
[41] PeirceA, DetournayE. An implicit level set method for modeling hydraulically driven fractures. Comput Methods Appl Mech Eng. 2008;197(33‐40):2858‐2885. https://doi.org/10.1016/j.cma.2008.01.013 · Zbl 1194.74534 · doi:10.1016/j.cma.2008.01.013
[42] LecampionB, PeirceA, DetournayE, et al. The impact of the near‐tip logic on the accuracy and convergence rate of hydraulic fracture simulators compared to reference solutions. In: BungerAP (ed.), McLennanJ (ed.), JeffreyR (ed.), eds. Effective and Sustainable Hydraulic Fracturing. Rijeka, Croatia:IntechOpen; 2013:1598.
[43] LecampionB, DesrochesJ. Simultaneous initiation and growth of multiple radial hydraulic fractures from a horizontal wellbore. J Mech Phys Solids. 2015;82:235‐258. https://doi.org/10.1016/j.jmps.2015.05.010 · doi:10.1016/j.jmps.2015.05.010
[44] PeirceA. Modeling multi‐scale processes in hydraulic fracture propagation using the implicit level set algorithm. Comput Methods Appl Mech Eng. 2015;283:881‐908. https://doi.org/10.1016/j.cma.2014.08.024 · Zbl 1425.74424 · doi:10.1016/j.cma.2014.08.024
[45] DontsovEV, PeirceAP. A multiscale Implicit Level Set Algorithm (ILSA) to model hydraulic fracture propagation incorporating combined viscous, toughness, and leak‐off asymptotics. Comput Methods Appl Mech Eng. 2017;313:53‐84. https://doi.org/10.1016/j.cma.2016.09.017 · Zbl 1439.74483 · doi:10.1016/j.cma.2016.09.017
[46] ChekhoninE, LevonyanK. Hydraulic fracture propagation in highly permeable formations, with applications to tip screenout. Int J Rock Mech Min Sci. 2012;50:19‐28. https://doi.org/10.1016/j.ijrmms.2011.12.006 · doi:10.1016/j.ijrmms.2011.12.006
[47] DontsovEV, PeirceAP. A Lagrangian approach to modelling proppant transport with tip screen‐out in KGD hydraulic fractures. Rock Mech Rock Eng. 2015;48(6):2541‐2550. https://doi.org/10.1007/s00603-015-0835-6 · doi:10.1007/s00603-015-0835-6
[48] BooneTJ, IngraffeaAR. A numerical procedure for simulation of hydraulically‐driven fracture propagation in poroelastic media. Int J Numer Anal Methods Geomech. 1990;14(1):27‐47. https://doi.org/10.1002/nag.1610140103 · doi:10.1002/nag.1610140103
[49] KomijaniM, GracieR. An enriched finite element model for wave propagation in fractured media. Finite Elem Anal Des. 2017;125:14‐23. https://doi.org/10.1016/j.finel.2016.11.001 · doi:10.1016/j.finel.2016.11.001
[50] PapanastasiouP, ThiercelinM. Influence of inelastic rock behaviour in hydraulic fracturing. Int J Rock Mech Min Sci Geomech Abstr. 1993;30(7):1241‐1247. https://doi.org/10.1016/0148-9062(93)90102-J · doi:10.1016/0148-9062(93)90102-J
[51] PapanastasiouP. The influence of plasticity in hydraulic fracturing. Int J Fract. 1997;84(1):61‐79. https://doi.org/10.1023/A:1007336003057 · doi:10.1023/A:1007336003057
[52] MobasherME, Berger‐VergiatL, WaismanH. Non‐local formulation for transport and damage in porous media. Comput Methods Appl Mech Eng. 2017;324:654‐688. https://doi.org/10.1016/j.cma.2017.06.016 · Zbl 1439.74113 · doi:10.1016/j.cma.2017.06.016
[53] SarvaraminiE, DusseaultMB, GracieR. Characterizing the stimulated reservoir volume during hydraulic fracturing‐connecting the pressure fall‐off phase to the geomechanics of fracturing. J Appl Mech. 2018;85(10). https://doi.org/10.1115/1.4040479 · doi:10.1115/1.4040479
[54] LisjakA, GrasselliG. A review of discrete modeling techniques for fracturing processes in discontinuous rock masses. J Rock Mech Geotech Eng. 2014;6(4):301‐314. https://doi.org/10.1016/j.jrmge.2013.12.007 · doi:10.1016/j.jrmge.2013.12.007
[55] PeirceA. Implicit level set algorithms for modelling hydraulic fracture propagation. Philos Trans R Soc A Math Phys Eng Sci. 2016;374(2078). https://doi.org/10.1098/rsta.2015.0423 · Zbl 1353.74073 · doi:10.1098/rsta.2015.0423
[56] HattoriG, TrevelyanJ, AugardeCE, CoombsWM, AplinAC. Numerical simulation of fracking in shale rocks: current state and future approaches. Arch Comput Methods Eng. 2017;24(2):281‐317. https://doi.org/10.1007/s11831-016-9169-0 · Zbl 1364.76221 · doi:10.1007/s11831-016-9169-0
[57] WangenM. Finite element modeling of hydraulic fracturing on a reservoir scale in 2D. J Pet Sci Eng. 2011;77(3‐4):274‐285. https://doi.org/10.1016/j.petrol.2011.04.001 · doi:10.1016/j.petrol.2011.04.001
[58] ThallakS, RothenburgL, DusseaultMB. Simulation of multiple hydraulic fractures in a discrete element. In: Rock Mechanics as a Multidisciplinary Science: Proceedings of the 32nd US Symposium on Rock Mechanics. Abingdon, UK: Taylor & Francis; 1991:271‐280.
[59] VahabM, AkhondzadehS, KhoeiAR, KhaliliN. An X‐FEM investigation of hydro‐fracture evolution in naturally‐layered domains. Eng Fract Mech. 2018;191(2017):187‐204. https://doi.org/10.1016/j.engfracmech.2018.01.025 · doi:10.1016/j.engfracmech.2018.01.025
[60] HossainMM, RahmanMK. Numerical simulation of complex fracture growth during tight reservoir stimulation by hydraulic fracturing. J Pet Sci Eng. 2008;60(2):86‐104. https://doi.org/10.1016/j.petrol.2007.05.007 · doi:10.1016/j.petrol.2007.05.007
[61] ZienkiewiczOC, ChanAHC. Coupled problems and their numerical solution. In: DoltsinisI St (ed.), ed. Advances in Computational Nonlinear Mechanics. Vienna, Austria:Springer‐Verlag Vienna; 1989:139‐176. · Zbl 0702.73059
[62] KimJ, TchelepiHA, JuanesR. Stability and convergence of sequential methods for coupled flow and geomechanics: fixed‐stress and fixed‐strain splits. Comput Methods Appl Mech Eng. 2011;200(13‐16):1591‐1606. https://doi.org/10.1016/j.cma.2010.12.022 · Zbl 1228.74101 · doi:10.1016/j.cma.2010.12.022
[63] KimJ, TchelepiHA, JuanesR. Stability and convergence of sequential methods for coupled flow and geomechanics: drained and undrained splits. Comput Methods Appl Mech Eng. 2011;200(23‐24):2094‐2116. https://doi.org/10.1016/j.cma.2011.02.011 · Zbl 1228.74106 · doi:10.1016/j.cma.2011.02.011
[64] MikelićA, WheelerMF. Convergence of iterative coupling for coupled flow and geomechanics. Comput Geosci. 2013;17(3):455‐461. https://doi.org/10.1007/s10596-013-9393-8 · Zbl 1386.76115 · doi:10.1007/s10596-013-9393-8
[65] MikelićA, WangB, WheelerMF. Numerical convergence study of iterative coupling for coupled flow and geomechanics. Comput Geosci. 2014;18(3‐4):325‐341. https://doi.org/10.1007/s10596-013-9393-8 · Zbl 1386.76115 · doi:10.1007/s10596-013-9393-8
[66] MoësN, BelytschkoT. Extended finite element method for cohesive crack growth. Eng Fract Mech. 2002;69(7):813‐833. https://doi.org/10.1016/S0013-7944(01)00128-X · doi:10.1016/S0013-7944(01)00128-X
[67] GeubellePH, BaylorJS. Impact‐induced delamination of composites: a 2D simulation. Compos Part B Eng. 1998;29(5):589‐602. https://doi.org/10.1016/S1359-8368(98)00013-4 · doi:10.1016/S1359-8368(98)00013-4
[68] ZhangX, JeffreyRG, BungerAP, ThiercelinM. Initiation and growth of a hydraulic fracture from a circular wellbore. Int J Rock Mech Min Sci. 2011;48(6):984‐995. https://doi.org/10.1016/j.ijrmms.2011.06.005 · doi:10.1016/j.ijrmms.2011.06.005
[69] FriesTP. A corrected XFEM approximation without problems in blending elements. Int J Numer Methods Eng. 2008;75(5):503‐532. https://doi.org/10.1002/nme.2259 · Zbl 1195.74173 · doi:10.1002/nme.2259
[70] GeertsmaJ, De KlerkF. A rapid method of predicting width and extent of hydraulically induced fractures. J Petrol Tech. 1969;21(12):1571‐1581. https://doi.org/10.2118/2458-PA · doi:10.2118/2458-PA
[71] BatheKJ. The inf‐sup condition and its evaluation for mixed finite element methods. Comput Struct. 2001;79(2):243‐252. https://doi.org/10.1016/S0045-7949(00)00123-1 · doi:10.1016/S0045-7949(00)00123-1
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.