×

Implicit level set schemes for modeling hydraulic fractures using the XFEM. (English) Zbl 1286.76048

Summary: We describe two novel XFEM schemes for modeling fluid driven fractures both of which exploit an implicit level set algorithm (ILSA) for locating the singular free boundary that occurs when the fluid and fracture fronts coalesce. Both schemes use the mixed \(P \& W\) XFEM formulation developed in [E. Gordeliy and A. Peirce, “Coupling schemes for modeling hydraulic fracture propagation using the XFEM”, Comput. Methods Appl. Mech. Eng. 253, 305–322 (2013; doi:10.1016/j.cma.2012.08.017)] to incorporate the singular asymptotic solution in the fracture tips. The proposed level set strategy also exploits the asymptotic solution to provide a robust procedure to locate the free boundary, which is not restricted to symmetric growth of the fracture geometry or to a particular mode of propagation. The versatility of the ILSA-XFEM scheme is demonstrated by sampling different asymptotic behaviors along the so-called MK edge of parameter space [E. Detournay, “Propagation regimes of fluid-driven fractures in impermeable rocks”, Int. J. Geomech. 4 (1), 1–11 (2004; doi:org/10.1061/(ASCE)1532-3641(2004)4:1(35))] by making use of a universal asymptote [D. Garagash, Near-tip processes of fluid-driven fractures. Minneapolis: University of Minnesota (PhD Thesis) (1998); D. Garagash and E. Detournay, J. Appl. Mech. 67, No. 1, 183–192 (2000; Zbl 1110.74448)]. The two ILSA-XFEM schemes differ in the enrichment strategies that they use to represent the fracture tips: a scheme with full tip enrichment and a simpler, more efficient, scheme in which the tip asymptotic behavior is only imposed in a weak sense. Numerical experiments indicate that the XFEM-\(t\) scheme, with full tip enrichment, achieves an \(O(h^2)\) asymptotic convergence rate, while the XFEM-\(s\) scheme, with only signum enrichment to represent the crack geometry, achieves an \(O(h)\) asymptotic convergence rate.

MSC:

76D08 Lubrication theory
74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
74S05 Finite element methods applied to problems in solid mechanics
76M10 Finite element methods applied to problems in fluid mechanics
74R10 Brittle fracture

Citations:

Zbl 1110.74448

Software:

XFEM
Full Text: DOI

References:

[1] Gordeliy, E.; Peirce, A., Coupling schemes for modeling hydraulic fracture propagation using the XFEM, Comput. Methods Appl. Mech. Eng., 253, 305-322 (2013) · Zbl 1297.74104
[2] Detournay, E., Propagation regimes of fluid-driven fractures in impermeable rocks, Int. J. Geomech., 4, 1, 1-11 (2004)
[4] Garagash, D.; Detournay, E., The tip region of a fluid-driven fracture in an elastic medium, ASME J. Appl. Mech., 67, 1, 183-192 (2000) · Zbl 1110.74448
[5] Rubin, A., Propagation of magma-filled cracks, Ann. Rev. Earth Planet. Sci., 23, 287-336 (1995)
[6] Tsai, V. C.; Rice, J. R., A model for turbulent hydraulic fracture and application to crack propagation at glacier beds, J. Geophys. Res. Earth Surf., 115, F03007 (2010)
[7] Jeffrey, R.; Mills, K., Hydraulic fracturing applied to inducing longwall coal mine goaf falls, (Pacific Rocks 2000 (2000), Balkema: Balkema Rotterdam), 423-430
[8] van As, A.; Jeffrey, R., Caving induced by hydraulic fracturing at Northparkes mines, (Pacific Rocks 2000 (2000), Balkema: Balkema Rotterdam), 353-360
[9] Valkó, P.; Economides, M., Hydraulic Fracture Mechanics (1995), John Wiley & Sons: John Wiley & Sons Chichester UK
[10] (Economides, M.; Nolte, K., Reservoir Stimulation (2000), John Wiley & Sons: John Wiley & Sons Chichester, UK)
[11] Frank, U.; Barkley, N., Remediation of low permeability subsurface formations by fracturing enhancements of soil vapor extraction, J. Hazard. Mater., 40, 191-201 (2005)
[12] Murdoch, L., Mechanical analysis of idealized shallow hydraulic fracture, J. Geotech. Geoenviron., 128, 6, 488-495 (2002)
[13] Moës, N.; Dolbow, J.; Belytschko, T., A finite element method for crack growth without remeshing, Int. J. Numer. Methods Eng., 46, 131-150 (1999) · Zbl 0955.74066
[14] Stolarska, M.; Chopp, D.; Moes, N.; Belytschko, T., Modeling crack growth by level sets and the extended finite element method, Int. J. Numer. Methods Eng., 51, 943-960 (2001) · Zbl 1022.74049
[15] Sukumar, N.; Prevost, J.-H., Modeling quasi-static crack growth with the extended finite element method. Part I: computer implementation, Int. J. Solids Struct., 40, 7513-7537 (2003) · Zbl 1063.74102
[16] Peirce, A. P.; Detournay, E., An implicit level set method for modeling hydraulically driven fractures, Comput. Methods Appl. Mech. Eng., 197, 2858-2885 (2008) · Zbl 1194.74534
[19] Adachi, J.; Detournay, E., Self-similar solution of a plane-strain fracture driven by a power-law fluid, Int. J. Numer. Anal. Methods Geomech., 26, 579-604 (2002) · Zbl 1064.74148
[20] Rice, J., Mathematical analysis in the mechanics of fracture, (Liebowitz, H., Fracture, an Advanced Treatise, vol. II (1968), Academic Press: Academic Press New York, NY), 191-311, (Chapter 3) · Zbl 0214.51802
[21] Desroches, J.; Detournay, E.; Lenoach, B.; Papanastasiou, P.; Pearson, J.; Thiercelin, M.; Cheng, A.-D., The crack tip region in hydraulic fracturing, Proc. R. Soc. London, Ser. A, 447, 39-48 (1994) · Zbl 0813.73051
[22] Zilian, A.; Fries, T.-P., A localized mixed-hybrid method for imposing interfacial constraints in the extended finite element method (xfem), Int. J. Numer. Methods Eng., 79, 733-752 (2009) · Zbl 1171.74456
[23] Fries, T.-P., A corrected XFEM approximation without problems in blending element, Int. J. Numer. Methods Eng., 75, 503-532 (2008) · Zbl 1195.74173
[24] Peirce, A. P., A Hermite cubic collocation scheme for plane strain hydraulic fractures, Comput. Methods Appl. Mech. Eng., 199, 29-32, 1949-1962 (2010) · Zbl 1231.74492
[25] Ventura, G.; Gracie, R.; Belytschko, T., Fast integration and weight function blending in the extended finite element method, Int. J. Numer. Methods Eng., 77, 1-29 (2009) · Zbl 1195.74201
[26] Babuska, I.; Melenk, J. M., The partition of unity method, Int. J. Numer. Methods Eng., 40, 727-758 (1997) · Zbl 0949.65117
[27] Laborde, P.; Pommier, J.; Renard, Y.; Salaün, M., High-order extended finite element method for cracked domains, Int. J. Numer. Methods Eng., 64, 354-381 (2005) · Zbl 1181.74136
[28] Marques, J.; Owen, D., Infinite elements in quasi-static materially nonlinear problems, Comput. Struct., 18, 4, 739-751 (1984)
[29] Bettess, P., Infinite Elements (1992), Penshaw Press
[30] Carbonell, R.; Desroches, J.; Detournay, E., A comparison between a semi-analytical and a numerical solution of a two-dimensional hydraulic fracture, IJSS, 36, 31-32, 4869-4888 (1999) · Zbl 0949.74058
[31] Erdogan, F.; Biricikoglu, V., Two bonded half planes with a crack going through the interface, Int. J. Eng. Sci., 11, 745-766 (1973) · Zbl 0258.73046
[32] Peirce, A.; Siebrits, E., Uniform asymptotic approximations for accurate modeling of cracks in layered elastic media, Int. J. Fract., 110, 205-239 (2001)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.