×

Fluctuation effects in metapopulation models: percolation and pandemic threshold. (English) Zbl 1414.92209

Summary: Metapopulation models provide the theoretical framework for describing disease spread between different populations connected by a network. In particular, these models are at the basis of most simulations of pandemic spread. They are usually studied at the mean-field level by neglecting fluctuations. Here we include fluctuations in the models by adopting fully stochastic descriptions of the corresponding processes. This level of description allows to address analytically, in the SIS and SIR cases, problems such as the existence and the calculation of an effective threshold for the spread of a disease at a global level. We show that the possibility of the spread at the global level is described in terms of (bond) percolation on the network. This mapping enables us to give an estimate (lower bound) for the pandemic threshold in the SIR case for all values of the model parameters and for all possible networks.

MSC:

92D30 Epidemiology
92D25 Population dynamics (general)

References:

[1] Allen, L. J.S., An Introduction to Stochastic Processes with Applications to Biology, Pearson (2003), Prentice Hall: Prentice Hall New Jersey · Zbl 1205.60001
[2] Bailey, N. T.J., The total size of a general stochastic epidemic, Biometrika, 40, 177-185 (1953) · Zbl 0050.36601
[3] Bailey, N. T.J., The Mathematical Theory of Infectious Diseases and its Applications (1975), Griffin: Griffin London · Zbl 0334.92024
[4] Bajardi, P.; Poletto, C.; Balcan, D.; Hu, H.; Goncalves, B.; Ramasco, J. J.; Paolotti, D.; Perra, N.; Tizzoni, M.; Van den Broeck, W.; Colizza, V.; Vespignani, A., Modeling vaccination campaigns and the Fall/Winter 2009 activity of the new A(H1N1) influenza in the northern hemisphere, Emerging Health Threats J., 2, 11 (2009)
[5] Balcan, D.; Hu, H.; Goncalves, B.; Bajardi, P.; Poletto, C.; Ramasco, J. J.; Paolotti, D.; Perra, N.; Tizzoni, M.; Van den Broeck, W.; Colizza, V.; Vespignani, A., Seasonal transmission potential and activity peaks of the new influenza A(H1N1): a Monte Carlo likelihood analysis based on human mobility, BMC Med., 7, 45 (2009)
[6] Ball, F.; Nasell, I., The shape of the size distribution of an epidemic in a finite population, Math. Biosci., 123, 167-181 (1994) · Zbl 0805.92023
[7] Bramson, M. D., Convergence of solutions of the Kolmogorov equation to travelling waves, Mem. Am. Math. Soc., 285, 1-190 (1983) · Zbl 0517.60083
[8] Colizza, V.; Pastor-Satorras, R., Reaction-diffusion processes and metapopulation models in heterogeneous networks, Nature Phys., 3, 276-282 (2007)
[9] Colizza, V.; Vespignani, A., Invasion threshold in heterogeneous metapopulation networks, Phys. Rev. Lett., 99, 148701 (2007)
[10] Colizza, V.; Vespignani, A., Epidemic modeling in metapopulation systems with heterogeneous coupling pattern: theory and simulations, J. Theor. Biol., 251, 450-467 (2008) · Zbl 1398.92233
[11] Colizza, V.; Barrat, A.; Barthélemy, M.; Vespignani, A., The modeling of global epidemics: stochastic dynamics and predictability, Bull. Math. Biol., 68, 1893-1921 (2006) · Zbl 1296.92225
[12] Colizza, V.; Barrat, A.; Barthélemy, M.; Vespignani, A., The role of the airline transportation network in the prediction and predictability of global epidemics, Proc. Natl. Acad. Sci. (USA), 103, 2015-2020 (2006) · Zbl 1296.92225
[13] Colizza, V.; Barrat, A.; Barthélemy, M.; Vespignani, A., Predictability and epidemic pathways in global outbreaks of infectious diseases: the SARS case study, BMC Med., 5, 34 (2007)
[14] Cox, D. R., Some statistical methods connected with series of events, J. R. Stat. Soc. Ser. B, 17, 129-164 (1955) · Zbl 0067.37403
[15] Derrida, B.; Spohn, H., Polymers on disordered trees, spin glasses, and traveling waves, J. Stat. Phys., 51, 817-840 (1988) · Zbl 1036.82522
[16] Feller, W., An Introduction to Probability Theory and its Applications (1968), Wiley and Sons: Wiley and Sons New York · Zbl 0155.23101
[17] Fisher, R. A., The wave of advance of advantageous genes, Ann. Eugenics, 7, 353-369 (1937) · JFM 63.1111.04
[18] Flahault, A.; Valleron, A.-J., A method for assessing the global spread of HIV-1 infection based on air-travel, Math. Pop. Stud., 3, 1-11 (1991) · Zbl 0900.92100
[19] Gardiner, W. C., Handbook of Stochastic Methods for Physics, Chemistry, and Natural Sciences (2004), Springer: Springer New York · Zbl 1143.60001
[20] Gautreau, A.; Barrat, A.; Barthélemy, M., Global disease spread: statistics and estimation of arrival times, J. Theor. Biol., 251, 509-522 (2008) · Zbl 1398.92238
[21] Godrèche, C.; Luck, J. M., Nonequilibrium dynamics of urn models, J. Phys. Condens. Matter, 14, 1601-1615 (2002)
[22] Grais, R. F.; Hugh Ellis, J.; Glass, G. E., Assessing the impact of airline travel on the geographic spread of pandemic influenza, Eur. J. Epidemiol., 18, 1065-1072 (2003)
[23] Grais, R. F.; Hugh Ellis, J.; Kress, A.; Glass, G. E., Modeling the spread of annual influenza epidemics in the US: the potential role of air travel, Health Care Manage. Sci., 7, 127-134 (2004)
[24] Grassberger, P., On the critical behavior of the general epidemic process and dynamical percolation, Math. Biosci., 63, 157-172 (1983) · Zbl 0531.92027
[25] Godrèche, C., 2007. From urn models to zero-range processes: statics and dynamics. In: Ageing and the Glass Transition, Lecture Notes in Physics, vol. 716. Springer, Berlin, p. 261.; Godrèche, C., 2007. From urn models to zero-range processes: statics and dynamics. In: Ageing and the Glass Transition, Lecture Notes in Physics, vol. 716. Springer, Berlin, p. 261. · Zbl 1157.82375
[26] Hinrichsen, H., Non-equilibrium critical phenomena and phase transitions into absorbing states, Adv. Phys., 49, 815-958 (2000)
[27] Hufnagel, L.; Brockmann, D.; Geisel, T., Forecast and control of epidemics in a globalized world, Proc. Natl. Acad. Sci. USA, 101, 15124-15129 (2004)
[28] Karlin, S.; Taylor, H. M., A First Course in Stochastic Processes (1975), Academic Press · Zbl 0315.60016
[29] Kendall, D. G., On the generalized birth-and-death process, Ann. Math. Stat., 19, 1-15 (1948) · Zbl 0032.17604
[30] Kolmogorov, A.; Petrovsky, I.; Piscounov, N., Etude de l’équation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique, Moscow Univ. Bull. Math., 1, 1 (1937) · Zbl 0018.32106
[31] Longini, I. M., A mathematical model for predicting the geographic spread of new infectious agents, Math. Biosci., 90, 367-383 (1988) · Zbl 0651.92016
[32] Martin-Loef, A., The final size of a nearly critical epidemic, and the first passage time of a wiener process to a parabolic barrier, J. Appl. Probab., 35, 671-682 (1998) · Zbl 0919.92034
[33] Rvachev, L. A.; Longini, I. M., A mathematical model for the global spread of influenza, Math. Biosci., 75, 3-23 (1985) · Zbl 0567.92017
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.