×

Hilbert transforms along double variable fractional monomials. (English) Zbl 1409.42014

Summary: In this paper, we obtain the \(L^2(\mathbb{R}^2)\) boundedness and a single annulus \(L^p(\mathbb{R}^2)\) estimate for the Hilbert transform \(H_{\alpha,\beta}\) along the double variable fractional monomial \(u_1(x_1)[t]^\alpha+u_2(x_1)[t]^\beta\) \[ H_{\alpha,\beta}f(x_1,x_2): = \mathrm{p}.\,\mathrm{v}.\int_{ - \infty }^\infty {} f(x_1-t,x_2-u_1(x_1)[t]^\alpha-u_2(x_1)[t]^\beta)\,\frac{\mathrm{d}t}{t} \] with the bounds independent of the measurable function \(u_1\) and \(u_2\). At the same time, we also obtain the \(L^p(\mathbb{R})\) boundedness of the corresponding Carleson operator \[ \mathcal{C}_{\alpha,\beta}f(x):=\mathop {\sup }\limits_{{N_1},{N_2} \in \mathbb{R}} |\mathrm{p}.\,\mathrm{v}.\int_{ - \infty }^\infty {} e^{iN_1[t]^\alpha+iN_2[t]^\beta}f(x-t)\,\frac{\mathrm{d}t}{t}|, \]
where \([t]^\alpha\) stands for either \(|t|^\alpha\) or \(\operatorname{sgn}(t)|t|^\alpha\), \([t]^\beta\) stands for either \(|t|^\beta\) or \(\operatorname{sgn}(t)|t|^\beta\) and \(\alpha,\beta,p\in (1,\infty)\).

MSC:

42B20 Singular and oscillatory integrals (Calderón-Zygmund, etc.)
42B25 Maximal functions, Littlewood-Paley theory
Full Text: DOI

References:

[1] M. Bateman, Single annulus \(\begin{document}L^p\end{document}\) estimates for Hilbert transforms along vector fields, Rev. Mat. Iberoam., 29, 1021-1069 (2013) · Zbl 1283.42019 · doi:10.4171/RMI/748
[2] A. Carbery; M. Christ; J. Vance; S. Wainger; D. Watson, Operators associated to flat plane curves: \( \begin{document}L^p\end{document}\) estimates via dilation methods, Duke Math. J., 59, 675-700 (1989) · Zbl 0723.44006 · doi:10.1215/S0012-7094-89-05930-9
[3] A. Carbery; J. Vance; S. Wainger; D. Watson, The Hilbert transform and maximal function along flat curves, dilations, and differential equations, Amer. J. Math., 116, 1203-1239 (1994) · Zbl 0816.42010 · doi:10.2307/2374944
[4] L. Carleson, On convergence and growth of partial sums of Fourier series, Acta Math., 116, 135-157 (1966) · Zbl 0144.06402 · doi:10.1007/BF02392815
[5] H. Carlsson; M. Christ; A. Cordoba; J. Duoandikoetxea; J. L. Rubio de Francia; J. Vance; S. Wainger; D. Weinberg, \( \begin{document}L^p\end{document}\) estimates for maximal functions and Hilbert transforms along flat convex curves in \(\begin{document}\mathbb{R}^2\end{document} \), Bull. Amer. Math. Soc. (N.S.), 14, 263-267 (1986) · Zbl 0588.44007 · doi:10.1090/S0273-0979-1986-15433-9
[6] C. Fefferman, Pointwise convergence of Fourier series, Ann. of Math., 98, 551-571 (1973) · Zbl 0268.42009 · doi:10.2307/1970917
[7] S. Guo, Hilbert transform along measurable vector fields constant on Lipschitz curves: \( \begin{document}L^2\end{document}\) boundedness, Anal. PDE, 8, 1263-1288 (2015) · Zbl 1323.42013 · doi:10.2140/apde.2015.8.1263
[8] S. Guo, Oscillatory integrals related to Carleson’s theorem: fractional monomials, Commun. Pure Appl. Anal., 15, 929-946 (2016) · Zbl 1334.42014 · doi:10.3934/cpaa.2016.15.929
[9] S. Guo, Hilbert transform along measurable vector fields constant on Lipschitz curves: \( \begin{document}L^p\end{document}\) boundedness, Trans. Amer. Math. Soc., 369, 2493-2519 (2017) · Zbl 1356.42007 · doi:10.1090/tran/6750
[10] S. Guo; J. Hickman; V. Lie; J. Roos, Maximal operators and Hilbert transforms along variable non-flat homogeneous curves, Proc. Lond. Math. Soc., 115, 177-219 (2017) · Zbl 1388.42039 · doi:10.1112/plms.12037
[11] S. Guo; L. B. Pierce; J. Roos; P. Yung, Polynomial Carleson operators along monomial curves in the plane, J. Geom. Anal., 27, 2977-3012 (2017) · Zbl 1388.42040 · doi:10.1007/s12220-017-9790-7
[12] R. A. Hunt, On the convergence of Fourier series, in Orthogonal Expansions and their Continuous Analogues (Proc. Conf., Edwardsville, Ill., 1967), Southern Illinois Univ. Press, Carbondale, Ill. (1968), 235-255. · Zbl 0159.35701
[13] M. Lacey; X. Li, Maximal theorems for the directional Hilbert transform on the plane, Trans. Amer. Math. Soc., 358, 4099-4117 (2006) · Zbl 1095.42010 · doi:10.1090/S0002-9947-06-03869-4
[14] M. Lacey; C. Thiele, A proof of boundedness of the Carleson operator, Math. Res. Lett., 7, 361-370 (2000) · Zbl 0966.42009 · doi:10.4310/MRL.2000.v7.n4.a1
[15] A. Nagel; J. Vance; S. Wainger; D. Weinberg, Hilbert transforms for convex curves, Duke Math. J., 50, 735-744 (1983) · Zbl 0524.44001 · doi:10.1215/S0012-7094-83-05036-6
[16] D. H. Phong; E. M. Stein, Hilbert integrals, singular integrals, and Radon transforms. I, Acta Math., 157, 99-157 (1986) · Zbl 0622.42011 · doi:10.1007/BF02392592
[17] E. Prestini; P. Sjölin, A Littlewood-Paley inequality for the Carleson operator, J. Fourier Anal. Appl., 6, 457-466 (2000) · Zbl 1049.42010 · doi:10.1007/BF02511540
[18] E. M. Stein; S. Wainger, Oscillatory integrals related to Carleson’s theorem, Math. Res. Lett., 8, 789-800 (2001) · Zbl 0998.42007 · doi:10.4310/MRL.2001.v8.n6.a9
[19] J. Vance; S. Wainger; J. Wright, The Hilbert transform and maximal function along nonconvex curves in the plane, Rev. Mat. Iberoam., 10, 93-121 (1994) · Zbl 0810.42011 · doi:10.4171/RMI/146
[20] J. Wright, \( \begin{document}L^p\end{document}\) estimates for operators associated to oscillating plane curves, Duke Math. J., 67, 101-157 (1992) · Zbl 0766.42010 · doi:10.1215/S0012-7094-92-06705-6
[21] H. Yu and J. Li, \( \begin{document}L^p\end{document}\) Boundedness of Hilbert Transforms Associated with Variable Plane Curves, preprint, arXiv: 1806.08589.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.