×

Maximal operators and Hilbert transforms along variable non-flat homogeneous curves. (English) Zbl 1388.42039

The aim of this paper is to study the \(L^p\) boundedness of certain maximal and singular integral operators that act by integration along variable homogeneous curves in the plane, of the form \(\Gamma^{\alpha}_u(t):=(t,u\cdot[t]^{\alpha})\), where \(\alpha>0\) and the notation \([t]^{\alpha}\) stands for either \(|t|^{\alpha}\) or \({\mathrm{sgn}}(t)|t|^{\alpha}\).
More precisely, let \(u: {\mathbb{R}}^2 \to {\mathbb{R}}\) be a measurable function and \(0<\varepsilon_0 \leq\infty\). The following objects are considered:
(1) the (\(\varepsilon_0\)-truncated) maximal operator along \(\Gamma^{\alpha}_u\), defined by \[ \mathcal{M}_{u,\varepsilon_0}^{(\alpha)}f(x,y) =\sup_{0<\varepsilon<\varepsilon_0}\frac1{2\varepsilon} \int^{\varepsilon}_{-\varepsilon} |f(x-t,y-u(x,y)[t]^{\alpha})|dt, \]
(2) the (\(\varepsilon_0\)-truncated) Hilbert transform along \(\Gamma^{\alpha}_u\), given by \[ \mathcal{H}_{u,\varepsilon_0}^{(\alpha)}f(x,y) ={\mathrm{p.v.}}\int^{\varepsilon_0}_{-\varepsilon_0} f(x-t,y-u(x,y)[t]^{\alpha})\frac{dt}{t}. \]
This research was motivated by the so-called Zygmund conjecture, which asks whether the Lipschitz regularity of \(u\) suffices to guarantee any non-trivial \(L^p\) bounds for the maximal operator \(\mathcal{M}_{u,\varepsilon_0}:=\mathcal{M}_{u,\varepsilon_0}^{(1)}\), provided \(\varepsilon_0\) is small enough depending on \(\|u\|_{\mathrm{Lip}}\).
The authors obtain two main results when \(\alpha \neq 1\). The first one shows \(\mathcal{M}_{u,\varepsilon_0}^{(\alpha)}\) is bounded on \(L^p\) for some \(\varepsilon_0=\varepsilon_0(\|u\|_{\mathrm{Lip}})>0\) and every \(1 < p \leq 2\) provided \(u\) is Lipschitz. Moreover, an alternative proof of a result of G. Marletta and F. Ricci [Studia Math. 130, No. 1, 53–65 (1998; Zbl 0921.42014)] is also given. The second one says \(\mathcal{H}_{u}^{(\alpha)}:=\mathcal{H}_{u,\infty}^{(\alpha)}\) is bounded on \(L^p\) for all \(1< p <\infty\), under the assumption that \(u\) is a measurable function and is constant in the second variable. The proofs of the results rely on stationary phase methods, \(TT^{\ast}\) arguments, local smoothing estimates and a pointwise estimate for taking averages along curves.

MSC:

42B20 Singular and oscillatory integrals (Calderón-Zygmund, etc.)
42B25 Maximal functions, Littlewood-Paley theory
44A12 Radon transform

Citations:

Zbl 0921.42014

References:

[1] M.Bateman, ‘Single annulus \(L^p\) estimates for Hilbert transforms along vector fields’, Rev. Mat. Iberoam.29 (2013) 1021-1069. · Zbl 1283.42019
[2] M.Bateman and C.Thiele, ‘\(L^p\) estimates for the Hilbert transforms along a one‐variable vector field’, Anal. PDE6 (2013) 1577-1600. · Zbl 1285.42014
[3] J.Bourgain, ‘Averages in the plane over convex curves and maximal operators’, J. Anal. Math.47 (1986) 69-85. · Zbl 0626.42012
[4] J.Bourgain, ‘A remark on the maximal function associated to an analytic vector field’, Analysis at Urbana, vol. I (Urbana, IL, 1986-1987), London Mathematical Society Lecture Note Series 137 (Cambridge University Press, Cambridge, 1989) 111-132. · Zbl 0692.42006
[5] J.Bourgain, ‘Moment inequalities for trigonometric polynomials with spectrum in curved hypersurfaces’, Israel J. Math.193 (2013) 441-458. · Zbl 1271.42039
[6] J.Bourgain and C.Demeter, ‘The proof of the \(l^2\) decoupling conjecture’, Ann. of Math. (2) 182 (2015) 351-389. · Zbl 1322.42014
[7] J.Bourgain and L.Guth, ‘Bounds on oscillatory integral operators based on multilinear estimates’, Geom. Funct. Anal.21 (2011) 1239-1295. · Zbl 1237.42010
[8] A.Carbery, A.Seeger, S.Wainger and J.Wright, ‘Classes of singular integral operators along variable lines’, J. Geom. Anal.9 (1999) 583-605. · Zbl 0964.42003
[9] H.Carlsson, M.Christ, A.Cordoba, J.Duoandikoetxea, J. L. Rubiode Francia, J.Vance, S.Wainger and D.Weinberg, ‘\(L^p\) estimates for maximal functions and Hilbert transforms along flat convex curves in \(R^2\)’, Bull. Amer. Math. Soc. (N.S.) 14 (1986) 263-267. · Zbl 0588.44007
[10] M.Christ, A.Nagel, E.Stein and S.Wainger, ‘Singular and maximal Radon transforms: analysis and geometry’, Ann. of Math. (2) 150 (1999) 489-577. · Zbl 0960.44001
[11] C.Fefferman and E.Stein, ‘Some maximal inequalities’, Amer. J. Math.93 (1971) 107-115. · Zbl 0222.26019
[12] G.Garrigós and A.Seeger, ‘A mixed norm variant of Wolff’s inequality for paraboloids’, Harmonic analysis and partial differential equations, Contemporary Mathematics 505 (American Mathematical Society, Providence, RI, 2010) 179-197. · Zbl 1202.42021
[13] S.Guo, ‘Single annulus estimates for the variation‐norm Hilbert transforms along Lipschitz vector fields’, Proc. Amer. Math. Soc., to appear. · Zbl 1364.42016
[14] S.Guo, L.Pierce, J.Roos and P.‐L.Yung, ‘Polynomial Carleson operators along monomial curves in the plane’, Preprint, 2016, arXiv:1605.05812.
[15] S.Hong, J.Kim and C.Yang, ‘Maximal operators associated with vector polynomials of lacunary coefficients’, Canad. J. Math.61 (2009) 807-827. · Zbl 1171.42007
[16] A.Iosevich, ‘Maximal operators associated to families of flat curves in the plane’, Duke Math. J.76 (1994) 633-644. · Zbl 0827.42010
[17] G.Karagulyan, ‘On unboundedness of maximal operators for directional Hilbert transforms’, Proc. Amer. Math. Soc.135 (2007) 3133-3141 (electronic). · Zbl 1162.42009
[18] M.Lacey and X.Li, ‘Maximal theorems for the directional Hilbert transform on the plane’, Trans. Amer. Math. Soc.358 (2006) 4099-4117. · Zbl 1095.42010
[19] M.Lacey and X.Li, ‘On a conjecture of E. M. Stein on the Hilbert transform on vector fields’, Mem. Amer. Math. Soc.205 (2010) viii+72. · Zbl 1190.42005
[20] V.Lie, ‘The (weak‐\(L^2)\) boundedness of the quadratic Carleson operator’, Geom. Funct. Anal.19 (2009) 457-497. · Zbl 1178.42007
[21] V.Lie, ‘The boundedness of the Bilinear Hilbert Transform along non‐flat smooth curves’, Amer. J. Math.137 (2015) 313-364. · Zbl 1318.42008
[22] V.Lie, ‘On the boundedness of the bilinear Hilbert transform along non‐flat smooth curves. The Banach triangle case \((L^r, 1 \leqslant r < \infty )\)’, Rev. Mat. Iberoam, to appear. · Zbl 1395.42009
[23] V.Lie, ‘The polynomial Carleson operator’, Preprint, 2011, arXiv:1105.4504.
[24] G.Marletta and F.Ricci, ‘Two‐parameter maximal functions associated with homogeneous surfaces in \(R^n\)’, Studia Math.130 (1998) 53-65. · Zbl 0921.42014
[25] G.Mockenhaupt, A.Seeger and C.Sogge, ‘Wave front sets, local smoothing and Bourgain’s circular maximal theorem’, Ann. of Math. (2) 136 (1992) 207-218. · Zbl 0759.42016
[26] C.Muscalu, ‘Calderon commutators and the Cauchy integral on Lipschitz curves revisited I. First commutator and generalizations’, Rev. Mat. Iberoam.30 (2014) 727-750. · Zbl 1306.42026
[27] A.Nagel, E.Stein and S.Wainger, ‘Differentiation in lacunary directions’, Proc. Natl. Acad. Sci. USA75 (1978) 1060-1062. · Zbl 0391.42015
[28] A.Nagel, E.Stein and S.Wainger, Hilbert transforms and maximal functions related to variable curves, Harmonic analysis in Euclidean spaces (Proceedings of Symposia in Pure Mathematics, Williams College, Williamstown, MA, 1978), Part 1, Proceedings of Symposia in Pure Mathematics, Part XXXV (American Mathematical Society, Providence, RI, 1979) 95-98. · Zbl 0463.42008
[29] R.Oberlin, A.Seeger, T.Tao, C.Thiele and J.Wright, ‘A variation norm Carleson theorem’, J. Eur. Math. Soc. (JEMS) 14 (2012) 421-464. · Zbl 1246.42016
[30] M.Pramanik and A.Seeger, ‘\(L^p\) regularity of averages over curves and bounds for associated maximal operators’, Amer. J. Math.129 (2007) 61-103. · Zbl 1161.42009
[31] A.Seeger, ‘\(L^2\)‐estimates for a class of singular oscillatory integrals’, Math. Res. Lett.1 (1994) 65-73. · Zbl 0831.45012
[32] A.Seeger and S.Wainger, ‘Singular Radon transforms and maximal functions under convexity assumptions’, Rev. Mat. Iberoam.19 (2003) 1019-1044. · Zbl 1071.42012
[33] E.Stein, ‘Maximal functions. I. Spherical means’, Proc. Natl. Acad. Sci. USA73 (1976) 2174-2175. · Zbl 0332.42018
[34] E.Stein, Harmonic analysis: real‐variable methods, orthogonality, and oscillatory integrals. With the assistance of Timothy S. Murphy, Princeton Mathematical Series 43, Monographs in Harmonic Analysis, III (Princeton University Press, Princeton, NJ, 1993) xiv+695. · Zbl 0821.42001
[35] E.Stein and B.Street, ‘Multi‐parameter singular Radon transforms III: real analytic surfaces’, Adv. Math.229 (2012) 2210-2238. · Zbl 1242.42010
[36] E.Stein and S.Wainger, ‘Oscillatory integrals related to Carleson’s theorem’, Math. Res. Lett.8 (2001) 789-800. · Zbl 0998.42007
[37] T.Wolff, ‘Local smoothing type estimates on \(L^p\) for large \(p\)’, Geom. Funct. Anal.10 (2000) 1237-1288. · Zbl 0972.42005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.