×

Stochastic exponential integrators for a finite element discretisation of SPDEs with additive noise. (English) Zbl 1407.65198

Summary: We consider the numerical approximation of the general second order semilinear parabolic stochastic partial differential equations (SPDEs) driven by additive space-time noise. Our goal is to build two numerical algorithms with strong convergence rates higher than that of the standard semi-implicit scheme. In contrast to the standard time stepping methods which use basic increments of the noise, we introduce two schemes based on the exponential integrators, designed for finite element, finite volume or finite difference space discretisations. We prove the convergence in the root mean square \(L^2\) norm for a general advection diffusion reaction equation and a family of new Lipschitz nonlinearities. We observe from both the analysis and numerics that the proposed schemes have better convergence properties than the current standard semi-implicit scheme.

MSC:

65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
76S05 Flows in porous media; filtration; seepage
35Q35 PDEs in connection with fluid mechanics
35R60 PDEs with randomness, stochastic partial differential equations
35K10 Second-order parabolic equations
35K58 Semilinear parabolic equations

Software:

Expokit
Full Text: DOI

References:

[1] Baglama, J.; Calvetti, D.; Reichel, L., Fast Léja points, Electron. Trans. Numer. Anal., 7, 124-140, (1998) · Zbl 0912.65004
[2] Bedient, P. B.; Rifai, H. S.; Newell, C. J., Ground Water Contamination: Transport and Remediation, (1994), Prentice Hall PTR: Prentice Hall PTR Englewood Cliffs, New Jersey 07632
[3] Caliari, M.; Vianello, M.; Bergamaschi, L., Interpolating discrete advection diffusion propagators at Léja sequences, J. Comput. Appl. Math., 172, 1, 79-99, (2004) · Zbl 1055.65105
[4] Cook, H., Brownian motion in spinodal decomposition, Acta Metall., 18, 297-306, (1970)
[5] Da Prato, G.; Zabczyk, J., Stochastic Equations in Infinite Dimensions, Encyclopedia of Mathematics and Its Applications, vol. 45, (1992), Cambridge University Press · Zbl 0761.60052
[6] Durett, R., Stochastic spatial models, SIAM Rev., 41, 4, 677-718, (1999) · Zbl 0940.60086
[7] Elliott, C. M.; Larsson, S., Error estimates with smooth and nonsmooth data for a finite element method for the Cahn-Hilliard equation, Math. Comput., 58, 603-630, (1992) · Zbl 0762.65075
[8] Eymard, R.; Gallouet, T.; Herbin, R., Finite volume methods, (Ciarlet, P. G.; Lions, J. L., Handbook of Numerical Analysis, vol. 7, (2000), North-Holland: North-Holland Amsterdam), 713-1020 · Zbl 0981.65095
[9] Fujita, H.; Suzuki, T., Evolutions problems (part 1), (Ciarlet, P. G.; Lions, J. L., Handbook of Numerical Analysis, vol. II, (1991), North-Holland: North-Holland Amsterdam), 789-928 · Zbl 0875.65084
[10] Grebenkov, D.; Nguyen, B., Geometrical structure of Laplacian eigenfunctions, SIAM Rev., 55, 4, 601-667, (2013) · Zbl 1290.35157
[11] Henry, D., Geometric Theory of Semilinear Parabolic Equations, Lecture Note in Mathematics, vol. 840, (1981), Springer · Zbl 0456.35001
[12] Hochbruck, M.; Lubich, C., On Krylov subspace approximations to the matrix exponential operator, SIAM J. Numer. Anal., 34, 5, 1911-1925, (1997) · Zbl 0888.65032
[13] Jentzen, A., Pathwise numerical approximations of SPDEs with additive noise under non-global Lipschitz coefficients, Potential Anal., 31, 4, 375-404, (2009) · Zbl 1176.60051
[14] Jentzen, A., High order pathwise numerical approximations of SPDES with additive noise, SIAM J. Numer. Anal., 49, 2, 642-667, (2011) · Zbl 1228.65015
[15] Jentzen, A.; Kloeden, P. E., Overcoming the order barrier in the numerical approximation of SPDEs with additive space-time noise, Proc. R. Soc. A, 465, 2102, 649-667, (2009) · Zbl 1186.65011
[16] Jentzen, A.; Kloeden, P. E.; Winkel, G., Efficient simulation of nonlinear parabolic SPDES with additive noise, Ann. Appl. Probab., 21, 3, 908-950, (2011) · Zbl 1223.60050
[17] Kloeden, P.; Lord, G. J.; Neuenkirch, A.; Shardlow, T., The exponential integrator scheme for stochastic partial differential equations: pathwise error bounds, J. Comput. Appl. Math., 235, 5, 1245-1260, (2011) · Zbl 1208.65017
[18] Knabner, P.; Angermann, L., Numerical Methods for Elliptic and Parabolic Partial Differential Equations Solution, (2003), Springer · Zbl 0953.65075
[19] Kovács, M.; Larsson, S.; Lindgren, F., Strong convergence of the finite element method with truncated noise for semilinear parabolic stochastic equations with additive noise, Numer. Algorithms, 53, 309-320, (2010) · Zbl 1184.65014
[20] Kovács, M.; Lindgren, F.; Larsson, S., Spatial approximation of stochastic convolutions, J. Comput. Appl. Math., 235, 12, 3554-3570, (2011) · Zbl 1229.65027
[21] Kruse, R., Strong and Weak Approximation of Semilinear Stochastic Evolution Equations, Lecture Notes in Mathematics, vol. 2093, (2014), Springer · Zbl 1285.60002
[22] Larsson, S., Nonsmooth data error estimates with applications to the study of the long-time behavior of finite element solutions of semilinear parabolic problems, (1992), Department of Mathematics, Chalmers University of Technology, available at
[23] Lord, G. J.; Rougemont, J., A numerical scheme for stochastic PDEs with Gevrey regularity, IMA J. Numer. Anal., 24, 4, 587-604, (2004) · Zbl 1073.65008
[24] Lord, G. J.; Shardlow, T., Postprocessing for stochastic parabolic partial differential equations, SIAM J. Numer. Anal., 45, 2, 870-889, (2007) · Zbl 1140.60036
[25] Lord, G. J.; Tambue, A., A modified semi-implict Euler-Maruyama scheme for finite element discretisation of SPDEs, Appl. Math. Comput., 332, 105-122, (2018) · Zbl 1427.65316
[26] Lord, G. J.; Tambue, A., Stochastic exponential integrators for finite element discretisation of SPDEs for multiplicative and additive noise, IMA J. Numer. Anal., 33, 2, 515-543, (2013) · Zbl 1272.65010
[27] Moler, C.; Van Loan, C., Nineteen dubious ways to compute the exponential of a matrix, twenty-five years later, SIAM Rev., 45, 1, 3-49, (2003) · Zbl 1030.65029
[28] Rühaak, W.; Guadagnini, A.; Geiger, S.; Bär, K.; Gu, Y.; Aretz, A.; Homuth, S.; Sass, I., Upscaling thermal conductivities of sedimentary formations for geothermal exploration, Geothermics, 58, 49-61, (2015)
[29] Sidje, R. B., Expokit: a software package for computing matrix exponentials, ACM Trans. Math. Softw., 24, 1, 130-156, (1998) · Zbl 0917.65063
[30] Strobl, G. R., The Physics of Polymers, (1997), Springer
[31] Tambue, A., Efficient numerical schemes for porous media flow, (2010), Department of Mathematics, Heriot-Watt University
[32] Tambue, A., An exponential integrator for finite volume discretization of a reaction-advection-diffusion equation, Comput. Math. Appl., 71, 9, 1875-1897, (2016) · Zbl 1443.65167
[33] Tambue, A., Efficient numerical simulation of incompressible two-phase flow in heterogeneous porous media based on exponential Rosenbrock-Euler method and lower-order Rosenbrock-type method, J. Porous Media, 16, 5, 381-393, (2013)
[34] Tambue, A.; Berre, I.; Nordbotten, J. M., Efficient simulation of geothermal processes in heterogeneous porous media based on the exponential Rosenbrock-Euler and Rosenbrock-type methods, Adv. Water Resour., 53, 250-262, (2013)
[35] Tambue, A.; Lord, G. J.; Geiger, S., An exponential integrator for advection-dominated reactive transport in heterogeneous porous media, J. Comput. Phys., 229, 10, 3957-3969, (2010) · Zbl 1423.76355
[36] Tambue, A.; Ngnotchouye, J. M.T., Weak convergence for a stochastic exponential integrator and finite element discretization of stochastic partial differential equation with multiplicative & additive noise, Appl. Numer. Math., 108, 57-86, (2016) · Zbl 1346.65002
[37] Wang, Xiaojie; Qi, Ruisheng, A note on an accelerated exponential Euler method for parabolic SPDEs with additive noise, Appl. Math. Lett., 46, 31-37, (2015) · Zbl 1321.65159
[38] Yan, Y., Galerkin finite element methods for stochastic parabolic partial differential equations, SIAM J. Numer. Anal., 43, 4, 1363-1384, (2005) · Zbl 1112.60049
[39] Wang, X., Strong convergence rates of the linear implicit Euler method for the finite element discretization of SPDEs with additive noise, IMA J. Numer. Anal., 37, 2, 965-984, (2017) · Zbl 1433.65229
[40] Kruse, R., Optimal error estimates of Galerkin finite element methods for stochastic partial differential equations with multiplicative noise, IMA J. Numer. Anal., 34, 1, 217-251, (2014) · Zbl 1282.65021
[41] Wang, X., Weak error estimates of the exponential Euler scheme for semi-linear SPDEs without Malliavin calculus, Discrete Contin. Dyn. Syst., 36, 1, 481-497, (2016) · Zbl 1322.65021
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.