×

Spatial approximation of stochastic convolutions. (English) Zbl 1229.65027

This paper studies the behaviour of a linear stochastic evolution problem with additive noise. The authors present a general framework for representing the infinite-dimensional Wiener process and obtain error estimates for truncated expansions which they then combine with a finite element analysis to obtain bounds for the mean square error.

MSC:

65C30 Numerical solutions to stochastic differential and integral equations
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
65T60 Numerical methods for wavelets
60H15 Stochastic partial differential equations (aspects of stochastic analysis)
60H35 Computational methods for stochastic equations (aspects of stochastic analysis)
Full Text: DOI

References:

[1] Da Prato, G.; Debussche, A., Stochastic Cahn-Hilliard equation, Nonlinear Anal., 26, 241-263 (1996) · Zbl 0838.60056
[2] M. Kovács, S. Larsson, A. Mesforush, Finite element approximation of the Cahn-Hilliard-Cook equation, Preprint 2010:18, Department of Mathematical Sciences, Chalmers University of Technology.; M. Kovács, S. Larsson, A. Mesforush, Finite element approximation of the Cahn-Hilliard-Cook equation, Preprint 2010:18, Department of Mathematical Sciences, Chalmers University of Technology.
[3] S. Larsson, A. Mesforush, Finite element approximation of the linearized Cahn-Hilliard-Cook equation, Preprint 2009:20, Department of Mathematical Sciences, Chalmers University of Technology.; S. Larsson, A. Mesforush, Finite element approximation of the linearized Cahn-Hilliard-Cook equation, Preprint 2009:20, Department of Mathematical Sciences, Chalmers University of Technology. · Zbl 1236.65126
[4] Daubechies, I., (Ten Lectures on Wavelets. Ten Lectures on Wavelets, CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 61 (1992), Society for Industrial and Applied Mathematics (SIAM): Society for Industrial and Applied Mathematics (SIAM) Philadelphia, PA) · Zbl 0776.42018
[5] Müller-Gronbach, T.; Ritter, K., Lower bounds and nonuniform time discretization for approximation of stochastic heat equations, Found. Comput. Math., 7, 135-181 (2007) · Zbl 1136.60044
[6] Yan, Y., Semidiscrete Galerkin approximation for a linear stochastic parabolic partial differential equation driven by an additive noise, BIT, 44, 829-847 (2004) · Zbl 1080.65006
[7] Yan, Y., Galerkin finite element methods for stochastic parabolic partial differential equations, SIAM J. Numer. Anal., 43, 1363-1384 (2005), (electronic) · Zbl 1112.60049
[8] Grecksch, W.; Kloeden, P. E., Time-discretised Galerkin approximations of parabolic stochastic PDEs, Bull. Aust. Math. Soc., 54, 79-85 (1996) · Zbl 0880.35143
[9] Gyöngy, I.; Nualart, D., Implicit scheme for quasi-linear parabolic partial differential equations perturbed by space—time white noise, Stochastic Process. Appl., 58, 57-72 (1995) · Zbl 0832.60068
[10] Allen, E. J.; Novosel, S. J.; Zhang, Z., Finite element and difference approximation of some linear stochastic partial differential equations, Stochastics Stochastics Rep., 64, 117-142 (1998) · Zbl 0907.65147
[11] Davie, A. M.; Gaines, J. G., Convergence of numerical schemes for the solution of parabolic stochastic partial differential equations, Math. Comp., 70, 121-134 (2001), (electronic) · Zbl 0956.60064
[12] Du, Q.; Zhang, T., Numerical approximation of some linear stochastic partial differential equations driven by special additive noises, SIAM J. Numer. Anal., 40, 1421-1445 (2002), (electronic) · Zbl 1030.65002
[13] Gyöngy, I., Lattice approximations for stochastic quasi-linear parabolic partial differential equations driven by space—time white noise. I, Potential Anal., 9, 1-25 (1998) · Zbl 0915.60069
[14] Gyöngy, I., Lattice approximations for stochastic quasi-linear parabolic partial differential equations driven by space—time white noise. II, Potential Anal., 11, 1-37 (1999) · Zbl 0944.60074
[15] Hausenblas, E., Numerical analysis of semilinear stochastic evolution equations in Banach spaces, J. Comput. Appl. Math., 147, 485-516 (2002) · Zbl 1026.65005
[16] Hausenblas, E., Approximation for semilinear stochastic evolution equations, Potential Anal., 18, 141-186 (2003) · Zbl 1015.60053
[17] Shardlow, T., Numerical methods for stochastic parabolic PDEs, Numer. Funct. Anal. Optim., 20, 121-145 (1999) · Zbl 0919.65100
[18] Quer-Sardanyons, L.; Sanz-Solé, M., Space semi-discretisations for a stochastic wave equation, Potential Anal., 24, 303-332 (2006) · Zbl 1119.60061
[19] Walsh, J. B., Finite element methods for parabolic stochastic PDE’s, Potential Anal., 23, 1-43 (2005) · Zbl 1065.60082
[20] Walsh, J. B., On numerical solutions of the stochastic wave equation, Illinois J. Math., 50, 991-1018 (2006), (electronic) · Zbl 1108.60058
[21] Da Prato, G.; Zabczyk, J., (Stochastic Equations in Infinite Dimensions. Stochastic Equations in Infinite Dimensions, Encyclopedia of Mathematics and its Applications, vol. 44 (1992), Cambridge University Press: Cambridge University Press Cambridge) · Zbl 0761.60052
[22] Prévôt, C.; Röckner, M., (A Concise Course on Stochastic Partial Differential Equations. A Concise Course on Stochastic Partial Differential Equations, Lecture Notes in Mathematics, vol. 1905 (2007), Springer: Springer Berlin) · Zbl 1123.60001
[23] Thomée, V., (Galerkin Finite Element Methods for Parabolic Problems. Galerkin Finite Element Methods for Parabolic Problems, Springer Series in Computational Mathematics, vol. 25 (2006), Springer-Verlag: Springer-Verlag Berlin) · Zbl 1105.65102
[24] Kovács, M.; Larsson, S.; Saedpanah, F., Finite element approximation of the linear stochastic wave equation with additive noise, SIAM J. Numer. Anal., 48, 408-427 (2010) · Zbl 1217.65013
[25] Dahmen, W.; Kunoth, A.; Urban, K., Biorthogonal spline wavelets on the interval—stability and moment conditions, Appl. Comput. Harmon. Anal., 6, 132-196 (1999) · Zbl 0922.42021
[26] Dahmen, W., Wavelet methods for PDEs—some recent developments, J. Comput. Appl. Math., 128, 133-185 (2001), Numerical analysis 2000, vol. VII, Partial differential equations · Zbl 0974.65101
[27] Cohen, A.; Daubechies, I.; Feauveau, J.-C., Biorthogonal bases of compactly supported wavelets, Comm. Pure Appl. Math., 45, 485-560 (1992) · Zbl 0776.42020
[28] Hairer, M.; Stuart, A. M.; Voss, J.; Wiberg, P., Analysis of SPDEs arising in path sampling. I. The Gaussian case, Commun. Math. Sci., 3, 587-603 (2005) · Zbl 1138.60326
[29] Bennett, N. N.; Malinverno, A., Fast model updates using wavelets, Multiscale Model. Simul., 3, 106-130 (2004-2005), (electronic) · Zbl 1075.65156
[30] Beylkin, G.; Coifman, R.; Rokhlin, V., Fast wavelet transforms and numerical algorithms. I, Comm. Pure Appl. Math., 44, 141-183 (1991) · Zbl 0722.65022
[31] Kovács, M.; Larsson, S.; Lindgren, F., Strong convergence of the finite element method with truncated noise for semilinear parabolic stochastic equations with additive noise, Numer. Algorithms, 53, 309-320 (2010) · Zbl 1184.65014
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.