×

The localized method of approximated particular solutions for solving two-dimensional incompressible viscous flow field. (English) Zbl 1403.76159

Summary: The purpose of this paper is to demonstrate that the localized method of approximated particular solutions (LMAPS) is a stable, accurate tool for simulating two-dimensional incompressible viscous flow fields with Chorin’s projection method. Totally there are two numerical experiments conducted: the two-dimensional lid-driven cavity flow problem, and the two-dimensional backward facing step problem. Throughout this study, the LMAPS has been tested by non-uniform point distribution, extremely narrow rectangular domain, internal flow, velocity or pressure driven flow and high velocity or pressure gradient, etc. All results are similar to results of finite element method (FEM) or other literature, and it is concluded that the LMAPS has high potential to be applied to more complicated engineering applications.

MSC:

76M25 Other numerical methods (fluid mechanics) (MSC2010)
65M70 Spectral, collocation and related methods for initial value and initial-boundary value problems involving PDEs
76D05 Navier-Stokes equations for incompressible viscous fluids
Full Text: DOI

References:

[1] Chorin, A. J., Numerical solution of the Navier-Stokes equations, Math Comput, 22, 104, 745-762, (1968) · Zbl 0198.50103
[2] Bell, J.; Colella, P.; Glaz, H., A second-order projection method for the incompressible Navier-Stokes equations, J Comput Phys, 85, 257-283, (1989) · Zbl 0681.76030
[3] Patankar, S., Numerical heat transfer and fluid flow, (1980), Taylor & Francis Washington DC, ([ISBN-10: 0891165223 ISBN-13: 978-0891165224 0]) · Zbl 0521.76003
[4] Ferzige, J. H.; Peric, M., Computational methods for fluid dynamics, (2011), Springer-Verlag Berlin, ([ISBN 978-3-540-42074-3])
[5] Young, D. L.; Yang, S. K.; Eldho, T. I., Solution of the Navier-Stokes equations in velocity-vorticity form using a eulerian-Lagrangian boundary element method, Int J Numer Methods Fluids, 34, 7, 627-650, (2000) · Zbl 0996.76066
[6] Lo, D. C.; Young, D. L.; Nurugesan, K., An accurate numerical solution algorithm for 3D velocity-vorticity Navier-Stokes equations by the DQ method, Commun Numer Methods, 22, 3, 235-250, (2006) · Zbl 1276.76054
[7] Tezdutar, T. E.; Liou, J.; Ganjoo, D. K.; Behr, M., Solution technique for the vorticity-streamfunction formulation of two-dimensional unsteady incompressible flows, Int J Numer Methods Fluids, 11, 515-539, (1990) · Zbl 0711.76020
[8] Ghia, U.; Ghia, K. N.; Shin, C. T., High-re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method, J Comput Phys, 48, 387-411, (1982) · Zbl 0511.76031
[9] Gowinski, R., Finite element methods for Navier-Stokes equations, Annu Rev Fluid Mech, 24, 167-204, (1992) · Zbl 0743.76051
[10] Marshall, J.; Adcroftm, A.; Hill, C.; Perelman, L.; Heisey, C., A finite volume, incompressible Navier-Stokes model for studied of the Ocean on parallel computers, J Geophys Res, 102, C3, 5753-5766, (1997) · Zbl 0907.58089
[11] Hriberšek, M.; Škerget, L., Iterative methods in solving Navier-Stokes equations by the boundary element method, Int J Numer Methods Eng, 39, 1, 115-139, (1996) · Zbl 0870.76045
[12] Pozorski, J.; Wawrenczuk, A., SPH computation of incompressible viscous flows, J Theor Appl Mech, 40, 4, 917-937, (2002)
[13] Nam, M. D.; Thanh, T. C., Numerical solution of Navier-Stokes equations using multiquadric radial basis function networks, Int J Numer Methods Fluids, 37, 1, 65-86, (2011) · Zbl 1047.76101
[14] Chen, C. S.; Karageorghis, A.; Smyrlis, Y. S., The method of fundamental solutions - a meshless method, (2008), Dynamic Publishers Atlanta, ([ISBN: 1890888-04-4])
[15] Young, D. L.; Lin, Y. C.; Fan, C. M.; Chiu, C. L., The method of fundamental solutions for solving incompressible Navier-Stokes problems, Eng Anal Bound Elem, 33, 8-9, 1031-1044, (2009) · Zbl 1244.76104
[16] Fu, Z. J.; Chen, W.; Qin, Q. H., Boundary knot method for heat conduction in nonlinear functionally graded material, Eng Anal Bound Elem, 35, 5, 729-734, (2011) · Zbl 1259.80025
[17] Fu, Z. J.; Chen, W.; Yang, H. T., Boundary particle method for Laplace transformed time fractional diffusion equations, J Comput Phys, 235, 52-66, (2013) · Zbl 1291.76256
[18] Fu, Z. J.; Chen, W.; Gu, Y., Burton-Miller type singular boundary method for acoustic radiation and scattering, J Sound Vib, 333, 16, 3776-3793, (2014)
[19] Hannani, S. K.; Sadeghi, M. M., Navier-Stokes calculations using a finite point meshless method, Sci Iran, 12, 2, 151-166, (2005) · Zbl 1194.76205
[20] Shu, C.; Ding, H.; Yeo, K. S., Local radial basis function-based differential quadrature method and its application to solve two-dimensional incompressible Navier-Stokes equations, Comput Method Appl Mech, 192, 941-954, (2003) · Zbl 1025.76036
[21] Shu, C.; Ding, H.; Yeo, K. S., Computation of incompressible Navier-Stokes equations by local RBF-based differential quadrature method, Comput Model Eng Sci, 7, 195-205, (2005) · Zbl 1106.76427
[22] Zhou, C. H.; Shu, C., A local domain-free discretization method for simulation of incompressible flows over moving bodies, Int J Numer Methods Fluids, 66, 162-182, (2011) · Zbl 1394.76044
[23] Tsai, C. C.; Chen, C. S.; Hsu, T. W., The method of particular solutions for solving axisymmetric polyharmonic and poly-Helmholtz equations, Eng Anal Bound Elem, 33, 1396-1402, (2009) · Zbl 1244.65225
[24] Wen, P. H.; Chen, C. S., The method of particular solutions for solving scalar wave equations, Int J Numer Method Biomed Eng, 26, 1878-1889, (2010) · Zbl 1208.65153
[25] Chen, C. S.; Fan, C. M.; Wen, P. H., The method of approximate particular solutions for solving certain partial differential equations, Numer Methods Part D E, 28, 2, 506-522, (2012) · Zbl 1242.65267
[26] Atluri, S. N.; Zhu, T., A new meshless local Petrov-Galerkin (MLPG) approach in computational mechanics, Comput Mech, 22, 117-127, (1998) · Zbl 0932.76067
[27] Lin, H.; Atluri, S. N., The meshless local Petrov-Galerkin (MLPG) method for solving incompressible Navier-Stokes equations, Comput Model Eng Sci, 2, 2, 117-142, (2011)
[28] Lee, C. K.; Liu, X.; Fan, S. C., Local multiquadric approximation for solving boundary value problems, Comput Mech, 30, 5-6, 396-409, (2003) · Zbl 1035.65136
[29] Yao, G.; Chen, C. S.; Kolibal, J., A localized approach for the method of approximate particular solutions, Comput Math Appl, 61, 2376-2387, (2011) · Zbl 1221.65316
[30] Li, M.; Chen, W.; Chen, C. S., The localized RBFs collocation methods for solving high dimensional pdes, Eng Anal Bound Elem, 37, 10, 1300-1304, (2013) · Zbl 1287.65115
[31] Zhang, X.; Tian, H.; Chen, W., Local method of approximate particular solutions for two-dimensional unsteady burgers׳ equations, Comput Math Appl, 66, 12, 2425-2432, (2014) · Zbl 1368.35239
[32] Lin, C. Y.; Gu, M. H.; Young, D. L.; Chen, C. S., Localized method of approximate particular solutions with Cole-Hopf transformation for multi-dimensional Burgers equations, Eng Anal Bound Elem, 40, 78-92, (2014) · Zbl 1297.65130
[33] Karageorghis, A.; Chen, C. S.; Smyrlis, Y. S., Matrix decomposition RBF algorithm for solving 3D elliptic problems, Eng Anal Bound Elem, 33, 1368-1373, (2009) · Zbl 1244.65184
[34] Yao, G.; Šarler, B.; Chen, C. S., A comparison of three explicit local meshless methods using radial basis functions, Eng Anal Bound Elem, 35, 600-609, (2011) · Zbl 1259.65155
[35] Sanyasiraju, YVSS; Chandhini, G., Local radial basis function based gridfree scheme for unsteady incompressible viscous flows, J Comput Phys, 227, 8922-8948, (2008) · Zbl 1146.76045
[36] Bruneau, C.; Jouron, C., An efficient scheme for solving steady incompressible Navier-Stokes equations, J Comput Phys, 89, 389-413, (1990) · Zbl 0699.76034
[37] Sahin, M.; Owens, R., A novel fully implicit finite volume method applied to the lid-driven cavity problem. part I: high Reynolds number flow calculations, Int J Numer Methods Fluids, 42, 57-77, (2003) · Zbl 1078.76046
[38] Mramor, K.; Vertnik, R.; Sarler, B., Low and intermediate resolution of lid driven cavity problem by local radial basis function collocation method, Comput Mater Contin, 36, 1-21, (2013)
[39] Gu, M. H.; Fan, C. M.; Young, D. L., The method of fundamental solutions for the multi-dimensional wave equations, J Mar Sci Technol—Taiwan, 19, 586-595, (2011)
[40] Armaly, B. F.; Durst, F.; Pereira, J. C.F.; Schonung, B., Experimental and theoretical investigation of backward-facing step flow, J Fluid Mech, 127, 473-496, (1983)
[41] Kosma, Z., Method of lines for the Navier-Stokes equations in stream function formulation, Task Q, 9, 1, 17-35, (2004)
[42] Sarler, B.; Vertnik, R., Meshfree explicit local radial basis function collocation method for diffusion problems, Comput Math Appl, 21, 1269-1282, (2006) · Zbl 1168.41003
[43] Kim, J.; Moin, P., Application of a fractional-step method to incompressible Navier-Stokes equations, J Comput Phys, 59, 308-323, (1985) · Zbl 0582.76038
[44] Erturk, E., Numerical solutions of 2-D steady incompressible flow over a backward-facing step, part I: high Reynolds number solutions, Comput Fluids, 37, 633-655, (2008) · Zbl 1237.76102
[45] Gartling, D. K., A test problem for outflow boundary conditions—flow over a backward-facing step, Int J Numer Methods Fluids, 11, 7, 953-967, (1990)
[46] Pentaris, A.; Nikolados, K.; Tsangaris, S., Development of projection and artificial compressibility methodologies using the approximate factorization technique, Int J Numer Methods Fluids, 19, 11, 1013-1038, (1994) · Zbl 0824.76054
[47] Pappou, T.h.; Tsangaris, S., Development of an artificial compressibility methodology using flux vector splitting, Int J Numer Methods Fluids, 25, 523-545, (1997) · Zbl 0888.76059
[48] Barton, I. E., The entrance effect of laminar flow over a backward-facing step geometry, Int J Numer Methods Fluids, 25, 633-644, (1997) · Zbl 0900.76365
[49] Barton, I. E., Improved laminar predictions using a stabilized time-dependent simple scheme, Int J Numer Methods Fluids, 28, 841-857, (1998) · Zbl 0929.76081
[50] Keskar, J.; Lyn, D. A., Computations of a laminar backward-facing step flow at re=800 with a spectral domain decomposition method, Int J Numer Methods Fluids, 29, 411-427, (1999) · Zbl 0948.76061
[51] Domanski, J.; Kosma, Z., Numerical simulation of viscous flows over backward-facing steps, Z Angew Math Mech, 81, 4, 921-922, (2001) · Zbl 1057.76556
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.