×

Development of an artificial compressibility methodology using flux vector splitting. (English) Zbl 0888.76059

The authors propose an efficient solution based on the principle of artificial compressibility by using flux vector splitting. The solution is written for laminar, steady, incompressible two-dimensional flows, discretized in a general coordinate system. The unfactored discretized equations are solved with an implicit first-order-accurate time scheme together with the Gauss-Seidel relaxation technique. The authors report that the use of upwind schemes makes the coefficient matrices diagonally dominant, thus permitting CFL numbers up to 10.000. Thereby the convergence is markedly accelerated. The solution is compared with experimental data and other numerical results. Extension of the method to the computation of unsteady flows is under investigation.
Reviewer: E.Krause (Aachen)

MSC:

76M20 Finite difference methods applied to problems in fluid mechanics
76D05 Navier-Stokes equations for incompressible viscous fluids
Full Text: DOI

References:

[1] Harlow, Phys. Fluids 8 pp 2182– (1965) · Zbl 1180.76043 · doi:10.1063/1.1761178
[2] Chorin, J. Comput. Phys. 2 pp 12– (1967) · Zbl 0149.44802 · doi:10.1016/0021-9991(67)90037-X
[3] Steger, AIAA J. 15 pp 581– (1977) · Zbl 0381.76030 · doi:10.2514/3.60663
[4] and , Computational Methods for Fluid Flow, Springer, New York, (1983). · Zbl 0514.76001 · doi:10.1007/978-3-642-85952-6
[5] and , ’On the method of pseudocompressibility for numerically solving incompressible flows’, AIAA Paper 84-252, (1984).
[6] Choi, AIAA J. 23 pp 1519– (1985) · Zbl 0571.76016 · doi:10.2514/3.9119
[7] Rizzi, J. Fluid Mech. 153 pp 275– (1985) · Zbl 0585.76158 · doi:10.1017/S0022112085001264
[8] Kwak, AIAA J. 24 pp 390– (1986) · Zbl 0587.76044 · doi:10.2514/3.9279
[9] and , ’Time accurate unsteady incompressible flow algorithms based on artificial compressibility’, AIAA Paper 87-1137, (1987).
[10] Soh, J. Comput. Phys. 79 pp 113– (1988) · Zbl 0651.76012 · doi:10.1016/0021-9991(88)90007-1
[11] and , ’Upwind relaxation algorithms for the Navier-Stokes equations’, AIAA Paper 85-1501-CP, (1985).
[12] Hartwich, J. Fluids Eng. 110 pp 297– (1988) · doi:10.1115/1.3243548
[13] Rogers, AIAA J. 28 pp 253– (1990) · Zbl 0693.76041 · doi:10.2514/3.10382
[14] Beam, J. Comput. Phys. 22 pp 87– (1976) · Zbl 0336.76021 · doi:10.1016/0021-9991(76)90110-8
[15] Steger, J. Comput. Phys. 40 pp 263– (1981) · Zbl 0468.76066 · doi:10.1016/0021-9991(81)90210-2
[16] ’Flux vector splitting for the Euler equations’, Lecture Notes in Physics, Vol. 170, Springer, Berlin, (1982) pp. 507-512.
[17] ’Development of upwind numerical methods in high speed aerodynamics’, Ph.D. Thesis, National Technical University of Athens, (1993).
[18] Drikakis, Int. j. numer. methods fluids 12 pp 771– (1991) · Zbl 0723.76053 · doi:10.1002/fld.1650120803
[19] Drikakis, Appl. Math. Model. 17 pp 282– (1993) · Zbl 0773.76045 · doi:10.1016/0307-904X(93)90054-K
[20] ’Three dimensional viscous flow simulation using an implicit relaxation scheme’, MBB-LKE122-S-PUB-309, (1987).
[21] van Albada, Astron. Astrophys. 108 pp 76– (1982)
[22] Armaly, J. Fluid Mech. 127 pp 473– (1983) · doi:10.1017/S0022112083002839
[23] Gartling, Int. j. numer. methods fluids 11 pp 953– (1990) · doi:10.1002/fld.1650110704
[24] Sobey, J. Fluid Mech. 151 pp 395– (1985) · doi:10.1017/S0022112085001021
[25] Ghia, J. Comput. Phys. 48 pp 387– (1981) · Zbl 0511.76031 · doi:10.1016/0021-9991(82)90058-4
[26] Burggraf, J. Fluid Mech. 24 pp 113– (1966) · doi:10.1017/S0022112066000545
[27] Koseff, J. Fluids Eng. 106 pp 390– (1984) · doi:10.1115/1.3243136
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.