×

Vanishing viscosity limit for Riemann solutions to a class of non-strictly hyperbolic systems. (English) Zbl 1395.35145

Summary: By the vanishing viscosity approach, a class of non-strictly hyperbolic systems of conservation laws that contain the equations of geometrical optics as a prototype are studied. The existence, uniqueness and stability of solutions involving delta shock waves and generalized vacuum states are discussed completely.

MSC:

35L65 Hyperbolic conservation laws
35L67 Shocks and singularities for hyperbolic equations
78A05 Geometric optics
35B25 Singular perturbations in context of PDEs
Full Text: DOI

References:

[1] Andreianov, B.P., On viscous limit solutions of the Riemann problem for the equations of isentropic gas dynamics in Eulerian coordinates, Sb. Math., 194, 793-811, (2003) · Zbl 1065.35180 · doi:10.1070/SM2003v194n06ABEH000739
[2] Adames, R.A.: Sobolev Space. Academic Press, New York (1975)
[3] Chen, G.; Liu, H., Formation of delta-shocks and vacuum states in the vanishing pressure limit of solutions to the Euler equations for isentropic fluids, SIAM J. Math. Anal., 34, 925-938, (2003) · Zbl 1038.35035 · doi:10.1137/S0036141001399350
[4] Chen, G.; Liu, H., Concentration and cavitation in the vanishing pressure limit of solutions to the Euler equations for nonisentropic fluids, Phys. D, 189, 141-165, (2004) · Zbl 1098.76603 · doi:10.1016/j.physd.2003.09.039
[5] Dafermos, C.M., Solution of the Riemann problem for a class of hyperbolic systems of conservation laws by the viscosity method, Arch. Ration. Mech. Anal., 52, 1-9, (1973) · Zbl 0262.35034 · doi:10.1007/BF00249087
[6] Dafermos, C.M.; Diperna, R.J., The Riemann problem for certain classes of hyperbolic systems of conservation laws, J. Differ. Equ., 20, 90-114, (1976) · Zbl 0323.35050 · doi:10.1016/0022-0396(76)90098-X
[7] Danilov, V.G.; Shelkovish, V.M., Dynamics of propagation and interaction of \(δ \)-shock waves in conservation law systems, J. Differ. Equ., 211, 333-381, (2005) · Zbl 1072.35121 · doi:10.1016/j.jde.2004.12.011
[8] Danilov, V.G.; Shelkovish, V.M., Delta-shock wave type solution of hyperbolic systems of conservation laws, Q. Appl. Math., 63, 401-427, (2005) · doi:10.1090/S0033-569X-05-00961-8
[9] Engquist, B.; Runborg, O., Multiphase computations in geometrical optics, J. Comput. Appl. Math., 74, 175-192, (1996) · Zbl 0947.78001 · doi:10.1016/0377-0427(96)00023-4
[10] Ercole, G., Delta-shock waves as self-similar viscosity limits, Q. Appl. Math., LVIII, 177-199, (2000) · Zbl 1157.35430 · doi:10.1090/qam/1739044
[11] Hopf, E., The partial differential equation \(u_{t}+uu_{x}=μ u_{xx}\), Commun. Pure Appl. Math., 3, 201-230, (1950) · Zbl 0039.10403 · doi:10.1002/cpa.3160030302
[12] Hu, J., A limiting viscosity approach to Riemann solutions containing delta-shock waves for nonstrictly hyperbolic conservation laws, Q. Appl. Math., LV, 361-373, (1997) · Zbl 0877.35076 · doi:10.1090/qam/1447583
[13] Hu, J., The Riemann problem for pressureless fluid dynamics with distribution solutions in colombeau’s sense, Commun. Math. Phys., 194, 191-205, (1998) · Zbl 0911.35084 · doi:10.1007/s002200050355
[14] Joseph, K.T., A Riemann problem whose viscosity solutions contain \(δ \)-measures, Asymptot. Anal., 7, 105-120, (1993) · Zbl 0791.35077
[15] Joseph, K.T., Explicit generalized solutions to a system of conservation laws, Proc. Indian Acad. Sci. Math. Sci., 109, 401-409, (1999) · Zbl 0941.35050 · doi:10.1007/BF02838000
[16] Kalasnikov, A.S., Construction of generalized solutions of quasi-linear equations of first order without convexity conditions as limits of solutions of parabolic equations with a small parameter, Dokl. Akad. Nauk SSSR, 127, 27-30, (1959) · Zbl 0100.09203
[17] Li, J., Note on the compressible Euler equations with zero temperature, Appl. Math. Lett., 14, 519-523, (2001) · Zbl 0986.76079 · doi:10.1016/S0893-9659(00)00187-7
[18] Panov, E.Y.; Shelkovich, V.M., \(δ '\)-shock waves as a new type of solutions to systems of conservation laws, J. Differ. Equ., 228, 49-86, (2006) · Zbl 1108.35116 · doi:10.1016/j.jde.2006.04.004
[19] Slemrod, M.; Tzavaras, A.E., A limiting viscosity approach for the Riemann problem in isentropic gas dynamics, Indiana Univ. Math. J., 38, 1047-1074, (1989) · Zbl 0675.76073 · doi:10.1512/iumj.1989.38.38048
[20] Shelkovich, V.M.; Abramian, A. (ed.); Vakulenko, S. (ed.); Volpert, V. (ed.), Delta-shock waves of a class of hyperbolic systems of conservation laws, 155-168, (2003), St. Petersburg
[21] Shelkovich, V.M., The Riemann problem admitting \(δ \)-, \(δ '\)-shocks, and vacuum states (the vanishing viscosity approach), J. Differ. Equ., 231, 459-500, (2006) · Zbl 1108.35117 · doi:10.1016/j.jde.2006.08.003
[22] Sheng, W., Zhang, T.: The Riemann problem for transportation equations in gas dynamics. Mem. Amer. Math. Soc., vol. 137(564). Am. Math. Soc., Providence (1999) · Zbl 0913.35082
[23] Tan, D.; Zhang, T.; Zheng, Y., Delta shock waves as limits of vanishing viscosity for hyperbolic system of conservation laws, J. Differ. Equ., 112, 1-32, (1994) · Zbl 0804.35077 · doi:10.1006/jdeq.1994.1093
[24] Tupciev, V.A., On the method of introducing viscosity in the study of problems involving the decay of a discontinuity, Dokl. Akad. Nauk SSSR, 211, 55-58, (1973) · Zbl 0294.35065
[25] Yang, H., Riemann problems for a class of coupled hyperbolic systems of conservation laws, J. Differ. Equ., 159, 447-484, (1999) · Zbl 0948.35079 · doi:10.1006/jdeq.1999.3629
[26] Yang, H.; Liu, J., Delta-shocks and vacuums in zero-pressure gas dynamics by the flux approximation, Sci. China Math., 58, 2329-2346, (2015) · Zbl 1331.35234 · doi:10.1007/s11425-015-5034-0
[27] Yang, H.; Liu, J., Concentration and cavitation in the Euler equations for nonisentropic fluids with the flux approximation, Nonlinear Anal., 123-124, 158-177, (2015) · Zbl 1330.76120
[28] Yang, H.; Zhang, Y., New developments of delta shock waves and its applications in systems of conservation laws, J. Differ. Equ., 252, 5951-5993, (2012) · Zbl 1248.35127 · doi:10.1016/j.jde.2012.02.015
[29] Yang, H.; Zhang, Y., Delta shock waves with Dirac delta function in both components for systems of conservation laws, J. Differ. Equ., 257, 4369-4402, (2014) · Zbl 1304.35422 · doi:10.1016/j.jde.2014.08.009
[30] Yang, H.; Zhang, Y., Flux approximation to the isentropic relativistic Euler equations, Nonlinear Anal., 133, 200-227, (2016) · Zbl 1398.35235 · doi:10.1016/j.na.2015.12.002
[31] Zhang, Y.; Yang, H., Flux-approximation limits of solutions to the relativistic Euler equations for polytropic gas, J. Math. Anal. Appl., 435, 1160-1182, (2016) · Zbl 1338.35347 · doi:10.1016/j.jmaa.2015.11.012
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.