×

Standard cocycles: variations on themes of C. Kassel’s and R. Wilson’s. (English) Zbl 1432.17017

Summary: Central extensions of Lie algebras can be understood and classified by means of 2-cocycles. The Lie algebras we are interested in are “twisted forms” (defined by Galois descent) of algebras of the form \(\mathfrak{g}\otimes_k R\) with \(\mathfrak{g}\) split finite-dimensional simple over a base field \(k\) of characteristic 0 and \(R\) a commutative unital and associative \(k\)-algebra (such algebras are ubiquitous in modern infinite-dimensional Lie theory). We introduce a special type of cocycle that we called standard. Our main result shows that any cocycle is cohomologous to a unique standard cocycle. As an application we give a precise description of the universal central extension of the twisted forms of \(\mathfrak{g}\otimes_k R\) mentioned above. This yields a new proof of a classic theorem of C. Kassel [J. Pure Appl. Algebra 34, 265–275 (1984; Zbl 0549.17009)]. For multiloop algebras, we obtain a “twisted” version of Kassel’s result (which is due to R. L. Wilson [Lie algebras and related topics, Lect. Notes Math. 933, 210–213 (1982; Zbl 0498.17012)] in the case of the affine Kac-Moody Lie algebras).

MSC:

17B55 Homological methods in Lie (super)algebras
17B67 Kac-Moody (super)algebras; extended affine Lie algebras; toroidal Lie algebras
17B01 Identities, free Lie (super)algebras
22E65 Infinite-dimensional Lie groups and their Lie algebras: general properties
Full Text: DOI

References:

[1] B. Allison, S. Azam, S. Berman, Y. Gao and A. Pianzola, Extended affine Lie algebras and their root systems, Mem. Amer. Math. Soc. 126 (1997), no. 603.; Allison, B.; Azam, S.; Berman, S.; Gao, Y.; Pianzola, A., Extended affine Lie algebras and their root systems, Mem. Amer. Math. Soc., 126, 603 (1997) · Zbl 0879.17012
[2] S. Berman and Y. Krylyuk, Universal central extensions of twisted and untwisted Lie algebras extended over commutative rings, J. Algebra 173 (1995), 302-347.; Berman, S.; Krylyuk, Y., Universal central extensions of twisted and untwisted Lie algebras extended over commutative rings, J. Algebra, 173, 302-347 (1995) · Zbl 0852.17020
[3] S. Chase, D. K. Harrison and A. Rosenberg, Galois theory and cohomology of commutative rings, Mem. Amer. Math. Soc. 52 (1965).; Chase, S.; Harrison, D. K.; Rosenberg, A., Galois theory and cohomology of commutative rings, Mem. Amer. Math. Soc., 52 (1965) · Zbl 0143.05902
[4] P. Gille and A. Pianzola, Galois cohomology and forms of algebras over Laurent polynomial rings, Math. Ann. 338 (2007), 497-543.; Gille, P.; Pianzola, A., Galois cohomology and forms of algebras over Laurent polynomial rings, Math. Ann., 338, 497-543 (2007) · Zbl 1131.11070
[5] P. Gille and A. Pianzola, Isotriviality and étale cohomology of Laurent polynomial rings, J. Pure Appl. Algebra 212 (2008), 780-800.; Gille, P.; Pianzola, A., Isotriviality and étale cohomology of Laurent polynomial rings, J. Pure Appl. Algebra, 212, 780-800 (2008) · Zbl 1132.14042
[6] A. Grothendieck, Éléments de géométrie algébrique. IV: Étude locale des schémas et des morphismes de schémas. (Première partie) Rédigé avec la colloboration de Jean Dieudonné, Publ. Math. Inst. Hautes Étud. Sci. 20 (1964), 101-355.; Grothendieck, A., Éléments de géométrie algébrique. IV: Étude locale des schémas et des morphismes de schémas. (Première partie) Rédigé avec la colloboration de Jean Dieudonné, Publ. Math. Inst. Hautes Étud. Sci., 20, 101-355 (1964) · Zbl 0136.15901
[7] A. Grothendieck, Séminaire de Géométrie Algébrique du Bois Marie 1960-61. Revêtements étales et groupe fondamental (SGA 1), Lecture Notes in Math. 224, Springer, Berlin, 1971.; Grothendieck, A., Séminaire de Géométrie Algébrique du Bois Marie 1960-61. Revêtements étales et groupe fondamental (SGA 1) (1971) · Zbl 0234.14002
[8] C. Kassel, Kähler differentials and coverings of complex simple Lie algebras extended over a commutative algebra, J. Pure Appl. Algebra 34 (1984), 265-275.; Kassel, C., Kähler differentials and coverings of complex simple Lie algebras extended over a commutative algebra, J. Pure Appl. Algebra, 34, 265-275 (1984) · Zbl 0549.17009
[9] M. A. Knus and M. Ojanguren, Théorie de la descente et algèbres d’Azumaya, Lecture Notes in Math. 389, Springer, Berlin, 1974.; Knus, M. A.; Ojanguren, M., Théorie de la descente et algèbres d’Azumaya (1974) · Zbl 0284.13002
[10] R. V. Moody and A. Pianzola, Lie Algebras with Triangular Decomposition, John Wiley, New York, 1995.; Moody, R. V.; Pianzola, A., Lie Algebras with Triangular Decomposition (1995) · Zbl 0874.17026
[11] R. V. Moody, S. Rao and T. Yokonuma, Toroidal Lie algebras and vertex representations, Geom. Dedicata 35 (1990), 283-307.; Moody, R. V.; Rao, S.; Yokonuma, T., Toroidal Lie algebras and vertex representations, Geom. Dedicata, 35, 283-307 (1990) · Zbl 0704.17011
[12] E. Neher, An introduction to universal central extensions of Lie superalgebras, Groups, Rings, Lie and Hopf Algebras (St. John’s 2001), Math. Appl. 555, Kluwer Academic Publishers, Dordrecht (2003), 141-166.; Neher, E., An introduction to universal central extensions of Lie superalgebras, Groups, Rings, Lie and Hopf Algebras, 141-166 (2003) · Zbl 1077.17016
[13] E. Neher and A. Pianzola, Étale descent of derivations, Transform. Groups 18 (2013), no. 4, 1189-1205.; Neher, E.; Pianzola, A., Étale descent of derivations, Transform. Groups, 18, 4, 1189-1205 (2013) · Zbl 1300.17005
[14] E. Neher, A. Pianzola, D. Prelat and C. Sepp, Invariant bilinear forms of algebras given by faithfully flat descent, Commun. Contemp. Math. 17 (2015), no. 2, Article ID 1450009.; Neher, E.; Pianzola, A.; Prelat, D.; Sepp, C., Invariant bilinear forms of algebras given by faithfully flat descent, Commun. Contemp. Math., 17, 2 (2015) · Zbl 1393.17043
[15] K.-H. Neeb and F. Wagemann, The second cohomology of current algebras of general Lie algebras, Canad. J. Math. 60 (2008), 892-922.; Neeb, K.-H.; Wagemann, F., The second cohomology of current algebras of general Lie algebras, Canad. J. Math., 60, 892-922 (2008) · Zbl 1162.17019
[16] A. Pianzola, Derivations of certain algebras defined by étale descent, Math. Z. 264 (2010), no. 3, 485-495.; Pianzola, A., Derivations of certain algebras defined by étale descent, Math. Z., 264, 3, 485-495 (2010) · Zbl 1257.17035
[17] A. Pianzola, D. Prelat and J. Sun, Descent constructions for central extensions of infinite dimensional Lie algebras, Manuscripta Math. 122 (2007), 137-148.; Pianzola, A.; Prelat, D.; Sun, J., Descent constructions for central extensions of infinite dimensional Lie algebras, Manuscripta Math., 122, 137-148 (2007) · Zbl 1188.17018
[18] J.-P. Serre, Cohomologie Galoisienne, 5th ed., Lecture Notes in Math. 5, Springer, Berlin, 1994.; Serre, J.-P., Cohomologie Galoisienne (1994) · Zbl 0812.12002
[19] J. Sun, Universal central extensions of twisted forms of split Lie algebras over rings, J. Algebra 322 (2009), 1819-1829.; Sun, J., Universal central extensions of twisted forms of split Lie algebras over rings, J. Algebra, 322, 1819-1829 (2009) · Zbl 1226.17020
[20] C. Weibel, An Introduction to Homological Algebra, Cambridge Stud. Adv. Math. 38, Cambridge University Press, Cambridge, 1994.; Weibel, C., An Introduction to Homological Algebra (1994) · Zbl 0797.18001
[21] R. L. Wilson, Euclidean Lie algebras are universal central extensions, Lie Algebras and Related Topics, Lecture Notes in Math. 933, Springer, Berlin (1982), 210-213.; Wilson, R. L., Euclidean Lie algebras are universal central extensions, Lie Algebras and Related Topics, 210-213 (1982) · Zbl 0498.17012
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.