×

Isotriviality and étale cohomology of Laurent polynomial rings. (English) Zbl 1132.14042

Let \(k\) be a field and \(A^n_k\) be the \(n\)-dimensional affine space over \(k\). The following two results are known to be fundamental in the study of torsors over \(k\):
(1) \(H^1_{\mathrm{Zar}}(A^n_k,\mathrm{GL}_n)=H^1_{\text{ét}}(A^n_k,\mathrm{GL}_n)=H^1_{\mathrm{fppf}}(A^n, \mathrm{GL}_n)\) and
(2) \(H^1_{\mathrm{Zar}}(A^n_k,\mathrm{GL}_n)=1\).
The first of these two results, a version of Hilbert 90, asserts that the Zariski topology - which is in general too coarse to deal with principal bundles - is fine enough to measure algebraic vector bundles. The second is equivalent to the theorem of Quillen and Suslin: All finitely generated projective modules over the polynomial ring \(k[t_1,t_2,\ldots,t_n]\) are free.
The main objective of the paper under review is to look at the above two questions in the case when \(k[t_1,t_2,\ldots,t_n]\) is replaced by the ring \(R_n=k[t_1^{\pm}{}^,\ldots,t_n{}^{\pm 1}]\) of Laurent polynomials in \(n\)-variables and \(\mathrm{GL}_n\) is replaced by some other affine smooth group scheme over \(R_n\). Assume \(k\) is algebraically closed of characteristic 0. Consider the class of Lie algebras \(L\) over \(R_n\) with the property that \(L\otimes_{R_n}S\simeq g\otimes_k S\) for some finite dimensional simple Lie algebra \(g\), and some cover \(S\) of \(R\) on the étale topology. Observe that in this way (for \(n=1\)) one obtains the affine Kac-Moody Lie algebras. All these algebras are parametrised by \(H^1_{\text{ét}}(R,\operatorname{Aut}(g))\), namely by torsors over \(R\) under \(\operatorname{Aut}(g)\). The main result of the paper is that any such torsor is isotrivial, i.e., trivialized by a finite étale extension of \(R_n\).

MSC:

14L15 Group schemes
17B67 Kac-Moody (super)algebras; extended affine Lie algebras; toroidal Lie algebras
20G15 Linear algebraic groups over arbitrary fields
Full Text: DOI

References:

[1] Amitsur, S. A., On central division algebras, Israel J. Math., 12, 408-420 (1972) · Zbl 0248.16006
[2] B. Allison, S. Berman, J. Faulkner, A. Pianzola, Realization of graded-simple algebras as loop algebras, Forum Math. (in press); B. Allison, S. Berman, J. Faulkner, A. Pianzola, Realization of graded-simple algebras as loop algebras, Forum Math. (in press) · Zbl 1157.17009
[3] Beauville, A.; Laszlo, Y., Un lemme de descente, C. R. Acad. Sci. Paris, 320, 335-340 (1995) · Zbl 0852.13005
[4] Bosch, S.; Lütkebohmert, W.; Raynaud, M., (Néron Models. Néron Models, Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 21 (1990), Springer-Verlag) · Zbl 0705.14001
[5] Bourbaki, N., Groupes et algèbres de Lie (1968), Hermann, (Chapitres 4-6) · Zbl 0186.33001
[6] Borel, A., (Linear Algebraic Groups. Linear Algebraic Groups, Graduate Texts in Mathematics, vol. 126 (1991), Springer) · Zbl 0726.20030
[7] Bruhat, F.; Tits, J., Groupes algébriques sur un corps local III Compléments et applications à la cohomologie galoisienne, J. Fac. Sci. Univ. Tokyo, 34, 671-698 (1987) · Zbl 0657.20040
[8] Brussel, E. S., The division algebras and Brauer group of a strictly Henselian field, J. Algebra, 239, 391-411 (2001) · Zbl 1009.16018
[9] Colliot-Thélène, J.-L., Birational invariants, purity and the Gersten conjecture, \((K\)-Theory and Algebraic Geometry: Connections with Quadratic Forms and Division Algebras (Santa Barbara, CA, 1992). \(K\)-Theory and Algebraic Geometry: Connections with Quadratic Forms and Division Algebras (Santa Barbara, CA, 1992), Proc. Sympos. Pure Math., vol. 58.1 (1995), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI), 1-64 · Zbl 0834.14009
[10] Colliot-Thélène, J.-L.; Sansuc, J.-J., Fibrés quadratiques et composantes connexes réelles, Math. Ann., 244, 105-134 (1979) · Zbl 0418.14016
[11] Colliot-Thélène, J.-L.; Ojanguren, M., Espaces principaux homogènes localement triviaux, I.H.É.S. Publ. Math., 75, 97-122 (1992) · Zbl 0795.14029
[12] DeMeyer, F. R., Projective modules over central separable algebras, Canadian J. Math., 21, 39-43 (1969) · Zbl 0167.30801
[13] Demazure, M.; Gabriel, P., Groupes Algébriques (1970), Masson · Zbl 0203.23401
[14] Grothendieck, A., (Eléments de Géométrie Algébrique IV. Eléments de Géométrie Algébrique IV, Publications mathématiques de l’I.H.É.S., no. 20, 24, 28, 32 (1967)) · Zbl 0153.22301
[15] Florence, M., Points rationnels sur les espaces homogènes et leurs compactifications, Transform. Groups, 11, 161-176 (2006) · Zbl 1108.12003
[16] E. Frossard, Arithmétique des variétés fibrées en variétés de Severi-Brauer, thèse, Orsay, 1995; E. Frossard, Arithmétique des variétés fibrées en variétés de Severi-Brauer, thèse, Orsay, 1995
[17] Garibaldi, R. S.; Merkurjev, A. A.; Serre, J.-P., (Cohomological Invariants in Galois Cohomology. Cohomological Invariants in Galois Cohomology, University Lecture Series, vol. 28 (2003), American Mathematical Society: American Mathematical Society Providence) · Zbl 1159.12311
[18] Gille, P.; Pianzola, A., Isotriviality of torsors over Laurent polynomials rings, C. R. Acad. Sci. Paris, Ser. I, 340, 725-729 (2005) · Zbl 1107.14035
[19] Gille, P.; Pianzola, A., Galois cohomology and forms of algebras over Laurent polynomial rings, Math. Ann., 338, 497-543 (2007) · Zbl 1131.11070
[20] Gille, P.; Szamuely, T., (Central Simple Algebras and Galois Cohomology. Central Simple Algebras and Galois Cohomology, Cambridge Studies in Advanced Mathematics, vol. 101 (2006), Cambridge University Press) · Zbl 1137.12001
[21] Giraud, J., (Cohomologie non abélienne. Cohomologie non abélienne, Die Grundlehren der mathematischen Wissenschaften, vol. 179 (1971), Springer-Verlag) · Zbl 0135.02401
[22] Grothendieck, A., Le groupe de Brauer. II. Théories cohomologiques, (Dix Exposés sur la Cohomologie des Schémas (1968), North-Holland: North-Holland Amsterdam, Masson, Paris), 67-87
[23] Grothendieck, A., Le groupe de Brauer. III. Exemples et compléments, (Dix Exposés sur la Cohomologie des Schémas (1968), North-Holland: North-Holland Amsterdam, Masson, Paris), 88-188 · Zbl 0198.25901
[24] Harder, G., Halbeinfache Gruppenschemata über Dedekindringen, Invent. Math., 4, 165-191 (1967) · Zbl 0158.39502
[25] Knus, M.-A., Algèbres d’Azumaya et modules projectifs, Comment. Math. Helv., 45, 372-383 (1970) · Zbl 0205.34203
[26] Knus, M. A., (Quadratic and Hermitian Forms Over Rings. Quadratic and Hermitian Forms Over Rings, Grundlehren der mathematischen Wissenschaften, vol. 294 (1991), Springer) · Zbl 0756.11008
[27] Luna, D., Slices étales, Bulletin de la Société Mathématique de France, Mémoire, 33, 81-105 (1973) · Zbl 0286.14014
[28] Magid, A., Brauer group of linear algebraic groups with characters, Proc. Amer. Math. Soc., 71, 164-168 (1978) · Zbl 0393.20029
[29] Margaux, B., Passage to the limit in non-abelian Čech cohomology, J. Lie Theory, 17, 591-596 (2007) · Zbl 1145.14018
[30] Moret-Bailly, L., Un problème de descente, Bull. Soc. Math. France, 124, 559-585 (1996) · Zbl 0914.13002
[31] Milne, J. S., Etale Cohomology (1980), Princeton University Press · Zbl 0433.14012
[32] Neukirch, Jürgen; Schmidt, Alexander; Wingberg, K., (Cohomology of Number Fields. Cohomology of Number Fields, Grundlehren der Mathematischen Wissenschaften, vol. 323 (2000), Springer-Verlag) · Zbl 0948.11001
[33] Ojanguren, M.; Sridharan, R., Cancellation of Azumaya algebras, J. Algebra, 18, 501-505 (1971) · Zbl 0223.16006
[34] Ono, T., On the arithmetic of algebraic tori, Ann. of Math., 74, 101-139 (1961) · Zbl 0119.27801
[35] Pianzola, A., Affine Kac-Moody Lie algebras as torsors over the punctured line, Indag. Math. (N.S.), 13, 2, 249-257 (2002) · Zbl 1029.17021
[36] Pianzola, A., Vanishing of \(H^1\) for Dedekind rings and applications to loop algebras, C. R. Acad. Sci. Paris, Ser. I, 340, 633-638 (2005) · Zbl 1078.14064
[37] Raghunathan, M. S., Principal bundles on affine spaces, (C.P. Ramanujan, A Tribute. C.P. Ramanujan, A Tribute, Tata Institute of Fundamental Research, Studies in Mathematic, vol. 8 (1978), Springer-Verlag), 187-206 · Zbl 0417.14037
[38] Raghunathan, M. S., Principal bundles on affine spaces and bundles on the projective line, Math. Ann., 285, 309-332 (1989) · Zbl 0661.14016
[39] Raghunathan, M. S.; Ramanathan, A., Principal bundles on the affine line, Proc. Indian Acad. Sci. Math. Sci., 93, 137-145 (1984) · Zbl 0587.14007
[40] Saltman, D., Indecomposable division algebras, Comm. Algebra, 7, 791-817 (1979) · Zbl 0403.16018
[41] Sansuc, J.-J., Groupe de Brauer et arithmétique des groupes algébriques linéaires, J. Reine Angew. Math., 327, 12-80 (1981) · Zbl 0468.14007
[42] J.-P. Serre, Cohomologie Galoisienne, cinquième édition révisée et complétée, in: Lecture Notes in Math., vol. 5, Springer-Verlag; J.-P. Serre, Cohomologie Galoisienne, cinquième édition révisée et complétée, in: Lecture Notes in Math., vol. 5, Springer-Verlag
[43] Grothendieck, A., Lecture Notes in Math., vol. 224 (1971), Springer, Séminaire de Géométrie algébrique de l’I.H.É.S., Revêtements étales et groupe fondamental, dirigé par
[44] Demazure, M.; Grothendieck, A., Lecture Notes in Math., vols. 151-153 (1970), Springer, Séminaire de Géométrie algébrique de l’I.H.É.S., 1963-1964, schémas en groupes, dirigé par · Zbl 0212.52801
[45] Théorie des topos et cohomologie étale des schémas, (Artin, M.; Grothendieck, A.; Verdier, J. L., Séminaire de Géométrie Algébrique du Bois-Marie 1963-1964. Séminaire de Géométrie Algébrique du Bois-Marie 1963-1964, Lecture Notes in Math., vol. 269, 270, 305 (1972), Springer-Verlag) · Zbl 0234.00007
[46] Tignol, J.-P., Sur les décompositions des algèbres à division en produit tensoriel d’algèbres cycliques, (van Oystaeyen, F.; Verschoren, A., Brauer Groups in Ring Theory and Algebraic Geometry. Brauer Groups in Ring Theory and Algebraic Geometry, Lecture Notes in Mathematics, vol. 917 (1982)), 126-145 · Zbl 0485.16012
[47] Tignol, J.-P.; Wadsworth, A. R., Totally ramified valuations on finite-dimensional division algebras, Trans. Amer. Math. Soc., 302, 223-250 (1987) · Zbl 0626.16005
[48] Wilson, J., (Profinite Groups. Profinite Groups, London Mathematical Society Monographs, New Series, vol. 19 (1998)) · Zbl 0909.20001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.