×

On base sizes for algebraic groups. (English) Zbl 1445.20002

The authors outline their investigations:
“Let \(G\) be a (closed) connected affine algebraic group over an algebraically closed field \(K\) of characteristic \(p \geq 0\). Let \(\Omega\) be a faithful transitive \(G\)-variety with point stabilizer \(H\), so we may identify \(\Omega\) with the coset variety \(G/H\). We define three base-related measures that arise naturally in this context:
(i) The exact base size, denoted \(b(G, H )\), is the smallest integer \(c\) such that \(\Omega\) contains \(c\) points with trivial pointwise stabilizer.
(ii) The connected base size, denoted \(b^0(G,H)\), is the smallest integer \(c\) such that \(\Omega\) contains \(c\) points whose pointwise stabilizer has trivial connected component, i.e. the pointwise stabilizer is finite.
(iii) The generic base size, denoted \(b^1(G,H)\), is the smallest integer \(c\) such that the product variety \(\Omega^c = \Omega\times \cdots \times \Omega\) (\(c\) factors) contains a non-empty open subvariety \(\Lambda\) and every \(c\)-tuple in \(\Lambda\) is a base for \(G\).
Evidently, we have \[b^0(G,H) \leq b(G,H) \leq b^1(G,H).\] Our ultimate goal is to determine these base-related measures for all simple algebraic groups \(G\) and all closed maximal subgroups \(H\) of \(G\) (that is, for all primitive actions of simple algebraic groups). Indeed, we essentially achieve this goal by computing these quantities in almost every case. In the handful of exceptional cases, we give a very narrow range for the possible values.”
The authors give a list of 73 references. They refer extensively to previous research. They include a number of lists of results such as: some subspace actions; values of \(b\) in Theorem 5(ii); \(G\) exceptional group, \(H\) parabolic subgroup; values of \(b\) in Theorem 7(ii); involutions inverting maximal tori, \(p \neq 2\); non-subspace involution-type subgroups; values of \(b\) in Theorem 3.13(ii); the \(\mathcal{C}_i \) collections; some maximal non-parabolic subgroups of exceptional groups; \(G\) exceptional group, dim \(G/P_i\); \(D = C_G(x)\), \(x\) semisimple, dim \(x^G \leq 100\); the fusion of unipotent classes, \(A_2G_2 < E_6\).

MSC:

20B15 Primitive groups
20G15 Linear algebraic groups over arbitrary fields
20G41 Exceptional groups
20D06 Simple groups: alternating groups and groups of Lie type
20G40 Linear algebraic groups over finite fields
Full Text: DOI

References:

[1] Aschbacher, M., On the maximal subgroups of the finite classical groups. Invent. Math. 76, 469-514 (1984)Zbl 0537.20023 MR 0746539 · Zbl 0537.20023
[2] Aschbacher, M., Seitz, G. M.: Involutions in Chevalley groups over fields of even order. Nagoya Math. J. 63, 1-91 (1976)Zbl 0359.20014 MR 0514895 · Zbl 0359.20014
[3] Azad, H., Barry, M., Seitz, G. M.: On the structure of parabolic subgroups. Comm. Algebra 18, 551-562 (1990)Zbl 0717.20029 MR 1047327 · Zbl 0717.20029
[4] Bailey, R. F., Cameron, P. J.: Base size, metric dimension and other invariants of groups and graphs. Bull. London Math. Soc. 43, 209-242 (2011)Zbl 1220.05030 MR 2781204 · Zbl 1220.05030
[5] Benbenishty, C., Cohen, J. A., Niemeyer, A. C.: The minimum length of a base for the symmetric group acting on partitions. Eur. J. Combin. 28, 1575-1581 (2007)Zbl 1120.05094 MR 2339486 · Zbl 1120.05094
[6] Bhargava, M., Gross, B. H.: Arithmetic invariant theory. In: Symmetry: Representation Theory and its Applications, Progr. Math. 257, Birkh¨auser, 33-54 (2014)Zbl 06436604 MR 3363006 · Zbl 1377.11045
[7] Bhargava, M., Gross, B. H.: The average size of the 2-Selmer group of Jacobians of hyperelliptic curves having a rational Weierstrass point. In: Automorphic Representations and L-functions, TIFR Stud. Math. 22, Tata Inst. Fund. Res., Mumbai, 23-91 (2013) Zbl 1303.11072 MR 3156850 · Zbl 1303.11072
[8] Bhargava, M., Gross, B. H., Wang, X.: Arithmetic invariant theory II: Pure inner forms and obstructions to the existence of orbits. In: Representations of Reductive Groups, Progr. Math. 312, Birkh¨auser/Springer, 139-171 (2015)Zbl 06598057 MR 3495795 · Zbl 1377.11046
[9] Bhargava, M., Ho, W.: Coregular spaces and genus one curves. Cambridge J. Math. 4, 1-119 (2016)Zbl 1342.14074 MR 3472915 · Zbl 1342.14074
[10] Bochert, A.: Ueber die Zahl verschiedenen Werte, die eine Function gegebener Buchstaben durch Vertauschung derselben erlangen kann. Math. Ann. 33, 584-590 (1889) JFM 21.0141.01 MR 1510562 · JFM 21.0141.01
[11] Bosma, W., Cannon, J., Playoust, C.: The MAGMAalgebra system I: The user language. J. Symbolic Comput. 24, 235-265 (1997)Zbl 0898.68039 MR 1484478 · Zbl 0898.68039
[12] Bourbaki, N.: Groupes et Algebr‘es de Lie (Chapˆıtres 4, 5 et 6). Hermann, Paris (1968) Zbl 1120.17002 MR 0240238 · Zbl 0186.33001
[13] Burness, T. C.: Fixed point spaces in actions of classical algebraic groups. J. Group Theory 7, 311-346 (2004)Zbl 1071.20040 MR 2063000 · Zbl 1071.20040
[14] Burness, T. C.: Fixed point ratios in actions of finite classical groups, III. J. Algebra 314, 693-748 (2007)Zbl 1133.20003 MR 2344583 · Zbl 1133.20003
[15] Burness, T. C.: On base sizes for actions of finite classical groups. J. London Math. Soc. 75, 545-562 (2007)Zbl 1128.20005 MR 2352720 · Zbl 1128.20005
[16] Burness, T. C., Guralnick, R. M., Saxl, J.: On base sizes for symmetric groups. Bull. London Math. Soc. 43, 386-391 (2011)Zbl 1222.20002 MR 2781219 On base sizes for algebraic groups2339 · Zbl 1222.20002
[17] Burness, T. C., Guralnick, R. M., Saxl, J.: Base sizes for S-actions of finite classical groups. Israel J. Math. 199, 711-756 (2014)Zbl 1321.20002 MR 3219555 · Zbl 1321.20002
[18] Burness, T. C., Guralnick, R. M., Saxl, J.: Base sizes for geometric actions of finite classical groups. In preparation · Zbl 1321.20002
[19] Burness, T. C., Liebeck, M. W., Shalev, A.: Base sizes for simple groups and a conjecture of Cameron. Proc. London Math. Soc. 98, 116-162 (2009)Zbl 1179.20002 MR 2472163 · Zbl 1179.20002
[20] Burness, T. C., O’Brien, E. A., Wilson, R. A.: Base sizes for sporadic simple groups. Israel J. Math. 177, 307-334 (2010)Zbl 1216.20008 MR 2684423 · Zbl 1216.20008
[21] Burness, T. C., Seress, ´A.: On Pyber’s base size conjecture. Trans. Amer. Math. Soc. 367, 5633-5651 (2015)Zbl 1316.20001 MR 3347185 · Zbl 1316.20001
[22] Cameron, P. J.: Permutation Groups. London Math. Soc. Student Texts 45, Cambridge Univ. Press (1999)Zbl 0922.20003 MR 1721031 · Zbl 0922.20003
[23] Cameron, P. J., Kantor, W. M.: Random permutations: some group-theoretic aspects. Combin. Probab. Comput. 2, 257-262 (1993)Zbl 0823.20002 MR 1264032 · Zbl 0823.20002
[24] Cohen, A. J., Cooperstein, B. N.: The 2-spaces of the standard E6(q)-module. Geom. Dedicata 25, 467-480 (1988)Zbl 0643.20025 MR 0925847 · Zbl 0643.20025
[25] Demazure, M., Grothendieck, A.: Sch´emas en groupes (SGA3). New annotated ed., Soc. Math. France (2011)Zbl 1241.14002(Vol. I)Zbl 1241.14003(Vol. III)
[26] Duncan, A., Reichstein, Z.: Versality of algebraic group actions and rational points on twisted varieties (with an appendix containing a letter from J.-P. Serre). J. Algebraic Geom. 24, 499- 530 (2015)Zbl 1327.14210 MR 3344763 · Zbl 1327.14210
[27] ‘Elashvili, A. G.: Canonical form and stationary subalgebras of points in general position for simple linear Lie groups. Funktsional. Anal. i Prilozhen. 6, no. 1, 51-62 (1972) (in Russian) Zbl 0252.22015 MR 0304554 · Zbl 0252.22015
[28] ‘Elashvili, A. G.: Stationary subalgebras of points of general position for irreducible linear Lie groups. Funktsional. Anal. i Prilozhen. 6, no. 2, 65-78 (1972) (in Russian)Zbl 0252.22016 MR 0304555
[29] Ellers, E. W., Gordeev, N.: On conjectures of J. Thompson and O. Ore. Trans. Amer. Math. Soc. 350, 3657-3671 (1998)Zbl 0910.20007 MR 1422600 · Zbl 0910.20007
[30] Fawcett, J. M.: The base size of a primitive diagonal group. J. Algebra 375, 302-321 (2013) Zbl 1287.20004 MR 2998958 · Zbl 1287.20004
[31] Fleischmann, P., Janiszczak, I.: The semisimple conjugacy classes and the generic class number of the finite simple groups of Lie type E8. Comm. Algebra 22, 2221-2303 (1994) Zbl 0816.20015 MR 1268550 · Zbl 0816.20015
[32] Fleischmann, P., Janiszczak, I.: The semisimple conjugacy classes of finite groups of Lie type E6and E7. Comm. Algebra 21, 93-161 (1993)Zbl 0813.20015 MR 1194553 · Zbl 0813.20015
[33] Garibaldi, S., Guralnick, R. M.: Essential dimension of algebraic groups, including bad characteristic. Arch. Math. (Basel) 107, 101-119 (2016)Zbl 06618998 MR 3528382 · Zbl 1369.11029
[34] Gitik, R., Mitra, M., Rips, E., Sageev, M.: Widths of subgroups. Trans. Amer. Math. Soc. 350, 321-329 (1998)Zbl 0897.20030 MR 1389776 · Zbl 0897.20030
[35] Goldstein, D., Guralnick, R. M.: Alternating forms and self-adjoint operators. J. Algebra 308, 330-349 (2007)Zbl 1111.11022 MR 2290925 · Zbl 1111.11022
[36] Gorenstein, D., Lyons, R., Solomon, R.: The Classification of the Finite Simple Groups, Number 3. Math. Surveys Monogr. 40, Amer. Math. Soc. (1998)Zbl 0890.20012 MR 1490581 · Zbl 0890.20012
[37] Grothendieck, A.: Compl´ements de g´eom´etrie alg´ebrique. Espaces de transformations. In: S´eminaire C. Chevalley 1 (1956-58), exp. 5, 19 pp. 2340Timothy C. Burness et al.
[38] Grothendieck, A.: ´El´ements de g´eom´etrie alg´ebrique IV (r´edig´es avec la collaboration de J. Dieudonn´e): ´Etude locale des sch´emas et des morphismes de sch´emas, III. Inst. Hautes Etudes Sci. Publ. Math. 28 (1966)´Zbl 0144.19904 MR 0217086
[39] Guralnick, R.: Intersections of conjugacy classes and subgroups of algebraic groups. Proc. Amer. Math. Soc. 135, 689-693 (2007)Zbl 1112.20040 MR 2262864 · Zbl 1112.20040
[40] Guralnick, R. M., Lawther, R., Liebeck, M. W., Testerman, D. M.: Generic stabilizers in actions of simple algebraic groups. In preparation
[41] Guralnick, R. M., Saxl, J.: Generation of finite almost simple groups by conjugates. J. Algebra 268, 519-571 (2003)Zbl 1037.20016 MR 2009321 · Zbl 1037.20016
[42] Halasi, Z.: On the base size of the symmetric group acting on subsets. Studia Sci. Math. Hungar. 49, 492-500 (2012)Zbl 1296.20002 MR 3098294 · Zbl 1296.20002
[43] Halasi, Z., Podoski, K.: Every coprime linear group admits a base of size two. Trans. Amer. Math. Soc. 368, 5857-5887 (2016)Zbl 06551584 MR 3458401 · Zbl 1382.20012
[44] Humphreys, J. E.: Conjugacy Classes in Semisimple Algebraic Groups. Math. Surveys Monogr. 43, Amer. Math. Soc. (1995)Zbl 0834.20048 MR 1343976 · Zbl 0834.20048
[45] James, J. P.: Partition actions of symmetric groups and regular bipartite graphs. Bull. London Math. Soc. 38, 224-232 (2006)Zbl 1159.20003 MR 2214474 · Zbl 1159.20003
[46] James, J. P.: Two point stabilisers of partition actions of linear groups. J. Algebra 297, 453- 469 (2006)Zbl 1156.20314 MR 2209270 · Zbl 1156.20314
[47] Lang, S., Weil, A.: Number of points of varieties over finite fields. Amer. J. Math. 76, 819- 827 (1954)Zbl 0058.27202 MR 0065218 · Zbl 0058.27202
[48] Lawther, R.: Jordan block sizes of unipotent elements in exceptional algebraic groups. Comm. Algebra 23, 4125-4156 (1995)Zbl 0880.20034 MR 1351124 · Zbl 0880.20034
[49] Lawther, R.: Finiteness of double coset spaces. Proc. London Math. Soc. 79, 605-625 (1999) Zbl 1030.20029 MR 1710166 · Zbl 1030.20029
[50] Lawther, R.: Unipotent classes in maximal subgroups of exceptional algebraic groups. J. Algebra 322, 270-293 (2009)Zbl 1179.20041 MR 2526390 · Zbl 1179.20041
[51] Lawther, R.: Elements in reductive algebraic groups with abelian connected centralizers. J. Algebra 359, 1-34 (2012)Zbl 1261.20048 MR 2914622 · Zbl 1261.20048
[52] Lawther, R., Liebeck, M. W., Seitz, G. M.: Fixed point spaces in actions of exceptional algebraic groups. Pacific J. Math. 205, 339-391 (2002)Zbl 1058.20039 MR 1922739 · Zbl 1058.20039
[53] Lemire, N.: Essential dimension of algebraic groups and integral representations of Weyl groups. Transform. Groups 9, 337-379 (2004)Zbl 1076.14060 MR 2105732 · Zbl 1076.14060
[54] Liebeck, M. W.: On minimal degrees and base sizes of primitive permutation groups. Arch. Math. (Basel) 43, 11-15 (1984)Zbl 0544.20005 MR 0758332 · Zbl 0544.20005
[55] Liebeck, M. W., Praeger, C. E., Saxl, J.: On the 2-closures of finite permutation groups. J. London Math. Soc. 37, 241-252 (1988)Zbl 0655.20003 MR 0928521 · Zbl 0655.20003
[56] Liebeck, M. W., Seitz, G. M.: Reductive subgroups of exceptional algebraic groups. Mem. Amer. Math. Soc. 121, no. 580 (1996)Zbl 0851.20045 MR 1329942 · Zbl 0851.20045
[57] Liebeck, M. W., Seitz, G. M.: On the subgroup structure of the classical groups. Invent. Math. 134, 427-453 (1998)Zbl 0920.20039 MR 1650328 · Zbl 0920.20039
[58] Liebeck, M. W., Seitz, G. M.: The maximal subgroups of positive dimension in exceptional algebraic groups. Mem. Amer. Math. Soc. 169, no. 802 (2004).Zbl 1058.20040 MR 2044850 · Zbl 1058.20040
[59] Liebeck, M. W., Seitz, G. M.: Unipotent and Nilpotent Classes in Simple Algebraic Groups and Lie Algebras. Math. Surveys Monogr. 180, Amer. Math. Soc. (2012)Zbl 1251.20001 MR 2883501 On base sizes for algebraic groups2341 · Zbl 1251.20001
[60] Liebeck, M. W., Shalev, A.: Character degrees and random walks in finite groups of Lie type. Proc. London Math. Soc. 90, 61-86 (2005)Zbl 1077.20020 MR 2107038 · Zbl 1077.20020
[61] Liebeck, M. W., Shalev, A.: Simple groups, permutation groups, and probability. J. Amer. Math. Soc. 12, 497-520 (1999)Zbl 0916.20003 MR 1639620 · Zbl 0916.20003
[62] Lou, B.: The centralizer of a regular unipotent element in a semi-simple algebraic group. Bull. Amer. Math. Soc. 74, 1144-1146 (1968)Zbl 0167.30201 MR 0231826 · Zbl 0167.30201
[63] Lusztig, G.: On the finiteness of the number of unipotent classes. Invent. Math. 34, 201-213 (1976)Zbl 0371.20039 MR 0419635 · Zbl 0371.20039
[64] Popov, A. M.: Finite stationary subgroups in general position of simple linear Lie groups. Trudy Moskov. Mat. Obshch. 48, 7-59 (1985) (in Russian)Zbl 0653.22007 MR 0830410
[65] Popov, A. M.: Finite isotropy subgroups in general position of irreducible semisimple linear Lie groups. Trudy Moskov. Mat. Obshch. 50, 209-248 (1987) (in Russian)Zbl 0667.22006 MR 0912058 · Zbl 0661.22009
[66] Popov, V. L., Vinberg, ‘E. B.: Invariant theory. In: Encyclopaedia Math. Sci. 55, Algebraic Geometry IV, Springer, Berlin, 123-278 (1994)Zbl 0789.14008 · Zbl 0788.00015
[67] Reichstein, Z.: On the notion of essential dimension for algebraic groups. Transform. Groups 5, 265-304 (2000)Zbl 0981.20033 MR 1780933 · Zbl 0981.20033
[68] Reichstein, Z.: Essential dimension. In: Proc. Int. Congress of Mathematicians (Hyderabad, 2010), Volume II, Hindustan Book Agency, New Delhi, 162-188 (2010)Zbl 1232.14030 MR 2827790 · Zbl 1232.14030
[69] Richardson, R.: On the variation of isotropy subalgebras. In: Proc. Conf. on Transformation Groups (New Orleans, LA, 1967), Springer, New York, 429-440 (1968)Zbl 0167.50201 MR 0244439 · Zbl 0167.50201
[70] Seress, ´A.: The minimal base size of primitive solvable permutation groups. J. London Math. Soc. 53, 243-255 (1996)Zbl 0854.20004 MR 1373058 · Zbl 0854.20004
[71] Seress, ´A.: Permutation Group Algorithms. Cambridge Tracts in Math. 152, Cambridge Univ. Press (2003)Zbl 1028.20002 MR 1970241 · Zbl 1028.20002
[72] Springer, T. A.: Linear Algebraic Groups. Progr. Math. 9, Birkh¨auser (1998) Zbl 0927.20024 MR 1642713 · Zbl 0927.20024
[73] Steinberg, R.: Endomorphisms of linear algebraic groups. Mem. Amer. Math. Soc. 80 (1968) Zbl 0164.02902 MR 0230728 · Zbl 0164.02902
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.