×

Bayesian estimation of the generalized lognormal distribution using objective priors. (English) Zbl 07192004

Summary: The generalized lognormal distribution plays an important role in analysing data from different life testing experiments. In this paper, we consider Bayesian analysis of this distribution using various objective priors for the model parameters. Specifically, we derive expressions for the Jeffreys-type priors, the reference priors with different group orderings of the parameters, and the first-order matching priors. We also study the properties of the posterior distributions of the parameters under these improper priors. It is shown that only two of them result in proper posterior distributions. Numerical simulation studies are conducted to compare the performances of the Bayesian estimators under the considered priors and the maximum likelihood estimates. Finally, a real-data application is also provided for illustrative purposes.

MSC:

62F10 Point estimation
62F15 Bayesian inference
62N02 Estimation in survival analysis and censored data
Full Text: DOI

References:

[1] Aitchison J, Brown J. The lognormal distribution. Cambridge: Cambridge University Press; 1957. [Google Scholar] · Zbl 0081.14303
[2] Martín J, Pérez CJ. Bayesian analysis of a generalized lognormal distribution. Comput Statist Data Anal. 2009;53(4):1377-1387. doi: 10.1016/j.csda.2008.11.029[Crossref], [Web of Science ®], [Google Scholar] · Zbl 1452.62733
[3] Chen C. Tests of fit for the three-parameter lognormal distribution. Comput Statist Data Anal. 2006;50(6):1418-1440. doi: 10.1016/j.csda.2005.01.012[Crossref], [Web of Science ®], [Google Scholar] · Zbl 1445.62023
[4] Singh B, Sharma KK, Rathi S, et al. A generalized log-normal distribution and its goodness of fit to censored data. Comput Statist. 2012;27(1):51-67. doi: 10.1007/s00180-011-0233-9[Crossref], [Web of Science ®], [Google Scholar] · Zbl 1304.65073
[5] Lindsey JK. Statistical analysis of stochastic processes in time. Cambridge Series in Statistical and Probabilistic Mathematics, Vol. 12. Cambridge: Cambridge University Press; 2004. [Crossref], [Google Scholar] · Zbl 1067.62086
[6] Bernardo JM. Reference posterior distributions for Bayesian inference. J R Stat Soc Ser B. 1979;41(2):113-147; with discussion. [Google Scholar] · Zbl 0428.62004
[7] Jeffreys H. Theory of probability. New York: Oxford Classic Texts in the Physical Sciences, The Clarendon Press, Oxford University Press; 1998. reprint of the 1983 edition. [Google Scholar] · Zbl 0902.62002
[8] Berger JO, Bernardo JM. On the development of reference priors. In: Bernardo JM, Berger JO, Dawid AP, Smith AFM, editors. Bayesian statistics, 4 (Peñíscola, 1991). New York: Oxford University Press; 1992. p. 35-60. [Google Scholar]
[9] Datta GS, Sweeting TJ. Probability matching priors. In: Dey DK, Rao CR, editors. Bayesian thinking: modeling and computation. Vol. 25 of Handbook of Statist. Amsterdam: Elsevier/North-Holland; 2005. p. 91-114. [Crossref], [Google Scholar] · Zbl 1136.62012
[10] Datta GS, Ghosh M, Mukerjee R. Some new results on probability matching priors. Calcutta Statist Assoc Bull. 2000;50(199-200):179-192. doi: 10.1177/0008068320000306[Crossref], [Google Scholar] · Zbl 0986.62017
[11] Mukerjee R, Dey DK. Frequentist validity of posterior quantiles in the presence of a nuisance parameter: higher order asymptotics. Biometrika. 1993;80(3):499-505. doi: 10.1093/biomet/80.3.499[Crossref], [Web of Science ®], [Google Scholar] · Zbl 0788.62025
[12] Mukerjee R, Ghosh M. Second-order probability matching priors. Biometrika. 1997;84(4):970-975. doi: 10.1093/biomet/84.4.970[Crossref], [Web of Science ®], [Google Scholar] · Zbl 0895.62003
[13] Devroye L. Non-uniform random variate generation. New York: Springer-Verlag; 1986. [Crossref], [Google Scholar] · Zbl 0593.65005
[14] Raftery AE, Lewis SM. Comment. [Practical Markov Chain Monte Carlo]: one long run with diagnostics: implementation strategies for Markov chain Monte Carlo. Statist Sci. 1992;7(4):493-497. doi: 10.1214/ss/1177011143[Crossref], [Google Scholar]
[15] Geweke J. Evaluating the accuracy of sampling-based approaches to the calculation of posterior moments. In: Bernardo JM, Berger JO, Dawid AP, Smith AFM, editors. Bayesian statistics, 4 (Peñíscola, 1991). New York: Oxford University Press; 1992. p. 169-193. [Google Scholar]
[16] Schafft H, Staton T, Mandel J, et al. Reproducibility of electromigration measurements. IEEE Trans Electron Devices (Impact Factor: 247). 1987;34(3):673-681. doi: 10.1109/T-ED.1987.22979[Crossref], [Web of Science ®], [Google Scholar]
[17] Berger J. The case for objective Bayesian analysis. Bayesian Anal. 2006;1(3):385-402. [Crossref], [Web of Science ®], [Google Scholar] · Zbl 1331.62042
[18] Yang R, Berger JO. A catalog of noninformative priors. ISDS discussion paper 97-42. Institute of Statistics and Decision Sciences, Duke University; 1997. [Google Scholar]
[19] Abramowitz M, Stegun IA. Handbook of mathematical functions with formulas, graphs, and mathematical tables. National Bureau of Standards Applied Mathematics Series, Vol. 55. Washington, DC: U.S. Government Printing Office; 1964. [Google Scholar] · Zbl 0171.38503
[20] Salazar E, Ferreira MAR, Migon HS. Objective Bayesian analysis for exponential power regression models. Sankhya B. 2012;74(1):107-125. doi: 10.1007/s13571-012-0045-0[Crossref], [Google Scholar] · Zbl 1257.62029
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.