×

A generalized log-normal distribution and its goodness of fit to censored data. (English) Zbl 1304.65073

Summary: In life testing experiments, the skewed distributions like log-normal, Weibull, gamma and generalized gamma are the most suitable models for recording the failure time measurements. In this paper, a generalized version of log-normal distribution is proposed and its goodness-of-fit for a randomly censored data set representing the remission times of bladder cancer patients has been demonstrated and compared with other lifetime models considered in the literature. The P-P plots of Kaplan-Meier estimator against the survival functions of the considered models are used to show the goodness-of-fit. A simulation study is also performed to estimate the parameters in both the classical and Bayesian setups.

MSC:

62-08 Computational methods for problems pertaining to statistics

References:

[1] Aitchison J, Brown JAC (1957) The log-normal distribution. Cambrdige university press, Cambridge
[2] Baur P (1997) Log-normal distribution of water permeability and organic solute mobility in plant cuticles. Plant cell Environ 20: 167–177 · doi:10.1046/j.1365-3040.1997.d01-66.x
[3] Berger J (2006) The case for objective Bayesian Anal. Bayesian Anal 1(3): 385–402 · Zbl 1331.62042 · doi:10.1214/06-BA115
[4] Biodini R (1976) Cloud motion and rainfall statistics. J Appl Meteorol 15: 205–224 · doi:10.1175/1520-0450(1976)015<0205:CMARS>2.0.CO;2
[5] Box GEP (1953) A note on regions of kurtosis. Biometrika 40: 465–468 · Zbl 0051.10806 · doi:10.1093/biomet/40.3-4.465
[6] Box GEP, Tiao GC (1992) Bayesian inference in statistical analysis. Wiley, New York
[7] Chen G (1995) Generalized log-normal distributions with reliability application. Comput Stat Data Anal 19: 309–319 · doi:10.1016/0167-9473(93)E0047-8
[8] Chen C (2006) Test of fit for three-parameter log-normal distribution. Comput Stat Data Anal 50: 1418–1440 · Zbl 1445.62023 · doi:10.1016/j.csda.2005.01.012
[9] Chen MH, Shao QM (1999) Monte Carlo estimation of Bayesian credible and HPD intervals. J Comput Graph Statistics 8: 69–92
[10] Crow, EL, Shimizu, K (eds) (1988) Log-normal distributions: theory and application. Dekker, New York
[11] Di Giorgio C, Krempff A, Guiraud H, Binder P, Tiret C, Dumenil G (1996) Atmospheric pollution by airborne microorganisms in the City of Marseilles. Atmos Environ 30: 155–160 · doi:10.1016/1352-2310(95)00143-M
[12] Geman S, Geman A (1984) Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images. IEEE Trans Pattern Anal Mach Intell 6: 721–740 · Zbl 0573.62030 · doi:10.1109/TPAMI.1984.4767596
[13] Hastings WK (1970) Monte Carlo sampling methods using Markov Chains and their applications. Biometrika 57: 97–109 · Zbl 0219.65008 · doi:10.1093/biomet/57.1.97
[14] Johnson NL, Kotz S, Balkrishan N (1994) Continuous univariate distributions. Wiley, New York
[15] Kaplan EL, Meier P (1958) Nonparametric estimation from incomplete observations. J Am Stat Assoc 53: 457–481 · Zbl 0089.14801 · doi:10.1080/01621459.1958.10501452
[16] Lee ET, Wang JW (2003) Statistical methods for survival data analysis 3rd edn. Wiley, New York
[17] Metropolis N, Ulam S (1949) The Monte Carlo method. J Am Stat Assoc 44: 335–341 · Zbl 0033.28807 · doi:10.1080/01621459.1949.10483310
[18] Nadarajah S (2005) A generalized normal distribution. J Appl Stat 32(7): 685–694 · Zbl 1121.62447 · doi:10.1080/02664760500079464
[19] Rahman M, Gokhale DV, Beaver RJ (1995) A note on estimating the combining constant in semi parametric density estimation unpublished manuscript. University of California, Riverside
[20] Romero RA, Sutton TB (1997) Sensitivity of Mycosphaerella fijiensis, causal agent of black sigatoka of banana to propiconozole. Phytopathology 87: 96–100 · doi:10.1094/PHYTO.1997.87.1.96
[21] Sachs L (1997) Angewandte statistik Anwendung statistischer methoden. Springer, Heidelberg · Zbl 0868.62001
[22] Subbotin MT (1923) On the law of frequency of errors. Mathematicheskii Sbornik 31(2): 296–301 · JFM 49.0370.01
[23] Turner ME (1960) On Heuristic estimation methods. Biometrics 16: 299–301 · doi:10.2307/2527560
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.