×

A new velocity-vorticity formulation for direct numerical simulation of 3D transitional and turbulent flows. (English) Zbl 1351.76158

Summary: Accuracy of velocity-vorticity (\(\overrightarrow{V}, \overrightarrow{\omega}\))-formulations over other formulations in solving Navier-Stokes equation has been established in recent times. However, the issue of non-satisfaction of solenoidality conditions on vorticity is not addressed in the literature which can possibly lead to non-physical solution. In this respect, here, we have developed and reported conservative rotational form of the (\(\overrightarrow{V}, \overrightarrow{\omega}\))-formulation which preserves the solenoidality condition on vorticity in a much simpler way compared to other formulations. Superiority of rotational form over the conventional Laplacian form of (\(\overrightarrow{V}, \overrightarrow{\omega}\))-formulation is also shown [by comparing the results for flows inside cubical lid driven cavity (LDC)]. For solving the 3D Navier-Stokes equation using a staggered grid, we use optimized compact schemes for (a) interpolation and (b) evaluation of first and second derivatives. As illustrations, we have solved problems of (i) flow inside a 3D lid driven cavity (LDC), whose solutions are compared with experimental results reported by Koseff and Street [19] and (ii) 3D transitional flow of an equilibrium zero pressure gradient (ZPG) boundary layer over a flat plate as demonstration of the effectiveness of the rotational form of (\(\overrightarrow{V}, \overrightarrow{\omega}\))-formulation.

MSC:

76M20 Finite difference methods applied to problems in fluid mechanics
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
76F06 Transition to turbulence
Full Text: DOI

References:

[1] Kim, J.; Moin, P., Application of a fractional-step method to incompressible Navier-Stokes equation, J. Comput. Phys., 59, 308-323 (1985) · Zbl 0582.76038
[2] Sengupta, T. K.; Dipankar, A., A comparative study of time-advancement methods for solving Navier-Stokes equation, J. Sci. Comput., 21, 225-250 (2004) · Zbl 1060.76084
[3] Perot, J. B., An analysis of the fractional step method, J. Comput. Phys., 103, 51 (1993) · Zbl 0778.76064
[4] Kleiser, L.; Schumann, U., (Hirschel, E. H., Proceedings of the Third GAMM Conference on Numerical Methods in Fluid Mechanics. Proceedings of the Third GAMM Conference on Numerical Methods in Fluid Mechanics, Notes on Numerical Fluid Mechanics, vol. 2 (1980)), 165-173
[5] Mittal, R.; Balachander, S., Direct numerical simulation of flow past elliptic cylinder, J. Comput. Phys., 124, 351 (1996) · Zbl 0849.76064
[6] Kampanis, N. A.; Ekaterinaris, J. A., A staggered grid, high-order accurate method for the incompressible Navier-Stokes equations, J. Comput. Phys., 215, 589-613 (2006) · Zbl 1173.76375
[7] Meitz, H. L.; Fasel, H. F., A compact-difference scheme for the Navier-Stokes equations in vorticity-velocity formulation, J. Comput. Phys., 157, 371-403 (2000) · Zbl 0960.76059
[8] Wu, X. H.; Wu, J. Z.; Wu, J. M., Effective vorticity-velocity formulations for 3D incompressible viscous flows, J. Comput. Phys., 122, 68-82 (1995) · Zbl 0835.76018
[9] Ravnik, J.; Åkerget, L.; Åuni, Z., Velocity-vorticity formulation for 3D natural convection in an inclined enclosure by BEM, Int. J. Heat Mass Transf., 51, 17-18, 4517-4527 (2008) · Zbl 1151.80004
[10] Lo, D. C.; Murugesan, K.; Young, D. L., Numerical solution of three-dimensional velocity-vorticity Navier-Stokes equations by finite difference method, Int. J. Numer. Methods Fluids, 47, 1469-1487 (2005) · Zbl 1155.76369
[11] Lo, D.; Young, D.; Murugesan, K.; Tsai, C.; Gou, M., Velocity-vorticity formulation for 3D natural convection in an inclined cavity by DQ method, Int. J. Heat Mass Transf., 50, 3-4, 479-491 (2007) · Zbl 1155.80001
[12] Napolitano, M.; Pascazio, G., A numerical method for the vorticity-velocity Navier-Stokes equations in two and three dimensions, Comput. Fluids, 19, 489-495 (1991) · Zbl 0733.76046
[13] Guj, G.; Stella, F., A vorticity-velocity method for the numerical solution of 3d incompressible flows, J. Comput. Phys., 106, 286-298 (1993) · Zbl 0770.76045
[14] Davies, C.; Carpenter, P. W., A novel velocity-vorticity formulation of the Navier-Stokes equations with applications to boundary layer disturbance evolution, J. Comput. Phys., 172, 119-165 (2001) · Zbl 1065.76573
[15] Liu, C. H., Numerical solution of three-dimensional Navier-Stokes equations by a velocity-vorticity method, Int. J. Numer. Methods Fluids, 35, 533-557 (2001) · Zbl 1013.76059
[16] Lo, D. C.; Murugesan, K.; Young, D. L., Numerical solution of three-dimensional velocity-vorticity Navier-Stokes equations by finite difference method, Int. J. Numer. Methods Fluids, 47, 1469-1487 (2005) · Zbl 1155.76369
[17] Rajpoot, M. K.; Bhaumik, S.; Sengupta, T. K., Solution of linearized rotating shallow water equations by compact schemes with different grid-staggering strategies, J. Comput. Phys., 231, 2300-2327 (2012) · Zbl 1427.76175
[18] Sengupta, T. K.; Rajpoot, M. K.; Bhumkar, Y. G., Space-time discretizing optimal DRP schemes for flow and wave propagation problems, Comput. Fluids, 47, 144-154 (2011) · Zbl 1271.76219
[19] Koseff, J. R.; Street, R. L., The lid-driven cavity flow: a synthesis of qualitative and quantitative observations, J. Fluids Eng., 106, 390-398 (1984)
[20] Sengupta, T. K.; Bhaumik, S., Onset of turbulence from the receptivity stage of fluid flows, Phys. Rev. Lett., 107, 154501 (2011)
[21] Sengupta, T. K.; Bhaumik, S.; Bhumkar, Y. G., Direct numerical simulation of two-dimensional wall-bounded turbulent flows from receptivity stage, Phys. Rev. E, 85, 026308 (2012)
[22] Sayadi, T.; Hamman, C. W.; Moin, P., Fundamental and subharmonic transition to turbulence in zero-pressure-gradient at-plate boundary layers, Phys. Fluids, 24, 091104 (2012)
[23] Sengupta, T. K.; Rao, A. K.; Venkatasubbaiah, K., Spatiotemporal growing wave-fronts in spatially stable boundary layers, Phys. Rev. Lett., 96, 1-4 (2006), 224504
[24] Bhaumik, S.; Sengupta, T. K., Precursor of transition to turbulence: spatiotemporal wave front, Phys. Rev. E, 89, 043018 (2014)
[25] Harlow, H. H.; Welch, J. E., Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface, Phys. Fluids, 8, 2182-2189 (1965) · Zbl 1180.76043
[26] Bhaumik, S.; Sengupta, T. K., On the divergence-free condition of velocity in two-dimensional velocity-vorticity formulation of incompressible Navier-Stokes equation, (AIAA-2011-3238. AIAA-2011-3238, AIAA CFD Conference, Honolulu, Hawaii, USA (2011))
[27] Wang, L.-P.; Rosa, B., A spurious evolution of turbulence originated from round-off error in pseudo-spectral simulation, Comput. Fluids, 38, 1943-1949 (2009) · Zbl 1242.76087
[28] Nagarajan, S.; Lele, S. K.; Ferziger, J. H., A robust high-order compact method for large eddy simulation, J. Comput. Phys., 191, 392-419 (2003) · Zbl 1051.76030
[29] Bhaumik, S., Direct numerical simulation of inhomogeneous transitional and turbulent flows (2013), I.I.T. Kanpur: I.I.T. Kanpur India, Ph.D. thesis
[30] Sengupta, T. K., High Accuracy Computing Methods: Fluid Flows and Wave Phenomena (2013), Cambridge Univ. Press: Cambridge Univ. Press USA · Zbl 1454.76002
[31] Chu, P. C.; Fan, C., A three-point combined compact difference scheme, J. Comput. Phys., 140, 370-399 (1998) · Zbl 0923.65071
[32] Sengupta, T. K.; Vijay, V. V.S. N.; Bhaumik, S., Further improvement and analysis of CCD scheme: dissipation discretization and de-aliasing properties, J. Comput. Phys., 228, 6150-6168 (2009) · Zbl 1173.76034
[33] Lele, S. K., Compact finite difference schemes with spectral-like resolution, J. Comput. Phys., 103, 16-42 (1992) · Zbl 0759.65006
[34] Sengupta, T. K.; Dipankar, A.; Rao, A. K., A new compact scheme for parallel computing using domain decomposition, J. Comput. Phys., 220, 654-677 (2007) · Zbl 1370.76072
[35] Sengupta, T. K.; Bhaumik, S.; Usman, S., A new compact difference scheme for second derivative in non-uniform grid expressed in self-adjoint form, J. Comput. Phys., 230, 5, 1822-1848 (2011) · Zbl 1211.65027
[36] Sayadi, T.; Hamman, C. W.; Moin, P., Direct numerical simulation of complete H-type and K-type transitions with implications for the dynamics of turbulent boundary layers, J. Fluid Mech., 724, 480-509 (2013) · Zbl 1287.76138
[37] Sayadi, T., Numerical simulation of controlled transition to developed turbulence in a zero-pressure-gradient flat-plate boundary layer (2012), Stanford Univ., Ph.D. thesis
[38] Gatski, T. B., Review of incompressible fluid flow computations using the vorticity-velocity formulation, Appl. Numer. Math., 7, 227-239 (1991) · Zbl 0714.76033
[39] Albensoeder, S.; Kuhlmann, H. C., Nonlinear three-dimensional flow in the lid-driven square cavity, J. Fluid Mech., 569, 465-480 (2006) · Zbl 1177.76268
[40] Tennekes, H.; Lumley, J. L., A First Course in Turbulence (1972), MIT Press: MIT Press Cambridge, MA, USA · Zbl 0285.76018
[41] Sengupta, T. K.; De, S.; Sarkar, S., Vortex-induced instability of incompressible wall-bounded shear layer, J. Fluid Mech., 493, 277-286 (2003) · Zbl 1068.76023
[42] Eiseman, P. R., Grid generation for fluid mechanics computations, Annu. Rev. Fluid Mech., 17, 487-522 (1985) · Zbl 0602.76034
[43] Skote, M.; Henningson, D. S., Direct numerical simulation of a separated turbulent boundary layer, J. Fluid Mech., 471, 107-136 (2002) · Zbl 1026.76029
[44] Fasel, H.; Konzelmann, U., Non-parallel stability of a flat-plate boundary layer using the complete Navier-Stokes equations, J. Fluid Mech., 221, 311-347 (1990) · Zbl 0715.76019
[45] Schlichting, H., Zur Entstehung der Turbulenz bei der Plattenströmung, Nachr. Ges. Wiss. Gött. Math.-Phys. Kl., 42, 181-208 (1933) · JFM 59.0767.03
[46] Pope, S. B., Turbulent Flows (2000), Cambridge Univ. Press: Cambridge Univ. Press Cambridge, UK · Zbl 0802.76033
[47] Wu, X.; Moin, P., Direct numerical simulation of turbulence in a nominally zero-pressure-gradient flat-plate boundary layer, J. Fluid Mech., 630, 5-41 (2009) · Zbl 1181.76084
[48] Saddoughi, S. G.; Veeravalli, S. V., Local isotropy in turbulent boundary layers at high Reynolds number, J. Fluid Mech., 268, 333-372 (1994)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.