×

A new compact scheme for parallel computing using domain decomposition. (English) Zbl 1370.76072

Summary: Direct numerical simulation (DNS) of complex flows require solving the problem on parallel machines using high accuracy schemes. Compact schemes provide very high spectral resolution, while satisfying the physical dispersion relation numerically. However, as shown here, compact schemes also display bias in the direction of convection–often producing numerical instability near the inflow and severely damping the solution, always near the outflow. This does not allow its use for parallel computing using domain decomposition and solving the problem in parallel in different sub-domains. To avoid this, in all reported parallel computations with compact schemes the full domain is treated integrally, while using parallel Thomas algorithm (PTA) or parallel diagonal dominant (PDD) algorithm in different processors with resultant latencies and inefficiencies. For domain decomposition methods using compact scheme in each sub-domain independently, a new class of compact schemes is proposed and specific strategies are developed to remove remaining problems of parallel computing. This is calibrated here for parallel computing by solving one-dimensional wave equation by domain decomposition method. We also provide the error norm with respect to the wavelength of the propagated wave-packet. Next, the advantage of the new compact scheme, on a parallel framework, has been shown by solving three-dimensional unsteady Navier–Stokes equations for flow past a cone-cylinder configuration at a Mach number of 4.Additionally, a test case is conducted on the advection of a vortex for a subsonic case to provide an estimate for the error and parallel efficiency of the method using the proposed compact scheme in multiple processors.

MSC:

76F65 Direct numerical and large eddy simulation of turbulence
65Y05 Parallel numerical computation
Full Text: DOI

References:

[1] Quarteroni, A.; Valli, A., Domain Decomposition Methods for Partial Differential Equations (1999), Oxford University Press: Oxford University Press Oxford, UK · Zbl 0931.65118
[2] Smith, B. F.; Bjorstad, P.; Gropp, W., Domain Decomposition, Parallel Multilevel Methods for Elliptic Partial Differential Equations (1996), Cambridge University Press: Cambridge University Press New York · Zbl 0857.65126
[3] Dolean, V.; Lanteri, S.; Nataf, F. C., Int. J. Num. Meth. Fluids, 40, 1539 (2002) · Zbl 1025.76034
[4] Lions, P. L., (Chan, T. F.; Glowinski, R.; Periaux, J.; Widlund, O., Third International Symposium on Domain Decomposition Methods for Partial Differential Equations (1990), SIAM: SIAM Philadelphia, PA) · Zbl 0695.00026
[5] J.S. Shang, J.A. Camberos, M.D. White, Advances in time-domain computational electromagnetics, AIAA Paper no., 99-3731, 1999.; J.S. Shang, J.A. Camberos, M.D. White, Advances in time-domain computational electromagnetics, AIAA Paper no., 99-3731, 1999.
[6] Lockard, D. P.; Morris, P. J., J. Comput. Acoust., 5, 337 (1997)
[7] A. Povitsky, P.J. Morris, ICASE Report No. 99-34, 1999.; A. Povitsky, P.J. Morris, ICASE Report No. 99-34, 1999.
[8] Lele, S. K., J. Comput. Phys., 103, 16 (1992) · Zbl 0759.65006
[9] Sengupta, T. K.; Ganeriwal, G.; De, S., J. Comput. Phys., 192, 2, 677 (2003) · Zbl 1038.65082
[10] Sengupta, T. K.; Sircar, S. K.; Dipankar, A., J. Sci. Comput., 26, 2, 151 (2006) · Zbl 1203.65149
[11] Dongarra, J. J.; Duff, I. S.; Sorenson, D. C.; Van der Vorst, H. A., Numerical Linear Algebra for High Performance Computers (1998), SIAM: SIAM Philadelphia · Zbl 0914.65014
[12] Hofhaus, J.; Van de Velde, E. F., SIAM J. Sci. Comput., 17, 2, 454 (1996) · Zbl 0851.65065
[13] Sun, X.-H., Parallel Comput., 21, 8, 1241 (1995) · Zbl 0873.65016
[14] Dipankar, A.; Sengupta, T. K., J. Comput. Phys., 215, 245 (2006) · Zbl 1140.76417
[15] Visval, M. R.; Gaitonde, D., J. Comput. Phys., 181, 155 (2002) · Zbl 1008.65062
[16] Kim, J. W.; Lee, J. D., AIAA J., 42, 1, 47 (2004)
[17] Kim, J. W.; Morris, P. J., AIAA J., 40, 10, 1961 (2002)
[18] Jameson, A.; Schmidt, W.; Turkel, E., AIAA Paper, 81, 1259 (1981)
[19] Pulliam, T. H.; Steger, J. L., AIAA J., 130, 2, 159 (1980)
[20] Drazin, P. G.; Reid, W. H., Hydrodynamic Stability (1981), Cambridge University Press: Cambridge University Press Cambridge, UK · Zbl 0449.76027
[21] Carton, X. J.; Flierl, G. R.; Polvani, L. M., Europhys. Lett., 9, 4, 339 (1989)
[22] Vichnevetsky, R., Mathematics and Computers in Simulation, vol. XXIII (1981), North Holland Publishing Co. · Zbl 0524.65061
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.