×

Fake modern Chinese painting identification based on spectral-spatial feature fusion on hyperspectral image. (English) Zbl 1441.94030

Summary: Chinese painting is famous and valuable for special painting materials, skills and final art effects used, yet this has resulted in many fake paintings being produced. Those fake paintings were normally made by using modern high resolution scanning and printing technology, thus it is very hard to identify the fake ones by human vision. To address this challenging problem, in this paper, a hyperspectral image based features fusion method is proposed. Firstly, we scan Chinese paintings using a visual band hyperspectral camera with the spectral frequency ranging from 400 to 900 nm. Then, the spectral and spatial features are extracted respectively by using the principal component analysis and a convolution neural network. Finally, we fuse these two kinds of features and input the feature set into a support vector machines for classification. All samples of real and fake paintings are obtained from local Chinese painting organization. The experimental result shows the effectiveness of the proposed method with an accuracy achieved of 84.6 %, which is significantly higher than other approaches where only spectral or spatial feature is used.

MSC:

94A08 Image processing (compression, reconstruction, etc.) in information and communication theory

Software:

AlexNet; ImageNet
Full Text: DOI

References:

[1] Borengasser, M., Hungate, W. S., & Watkins, R. (2008). Hyperspectral remote sensing-principles and applications (p. 2008). Boca Raton, FL: CRC Press.
[2] Boser, B. E., Guyon, I. M., & Vapnik, V. N. (1992). A training algorithm for optimal margin classifiers. In Proceedings of annual workshop on computational learning theroy, pp. 144-152.
[3] Boureau, Y.-L., Bach, F., LeCun, Y., & Ponce, J. (2010). Learning midlevel features for recog-nition. In Proceedings of IEEE Conference on CVPR, pp. 2559-2566. · Zbl 1371.94058
[4] Bovolo, F., Bruzzone, L., & Carlin, L. (2010). A novel technique for subpixel image classification based on support vector machine. IEEE Transactions on Image Processing, 19(11), 2983-2999. · Zbl 1371.94058 · doi:10.1109/TIP.2010.2051632
[5] Cheng, G., Han, J., Guo, L., Liu, Z., Bu, S., & Ren, J. (2015). Effective and efficient midlevel visual elements-oriented land-use classification using vhr remote sensing images. IEEE Transactions on Geoscience & Remote Sensing, 53(8), 1-12. · doi:10.1109/TGRS.2015.2393857
[6] Cheng, G., Han, J. W., Zhou, P. C., & Guo, L. (2014). Multi-class geospatial object detection and geographic image classification based on collection of part detectors. ISPRS Journal of Photogrammetry & Remote Sensing, 98(1), 119132.
[7] Datt, B., McVicar, T. R., Niel, T. G. V., Jupp, D. L. B., & Pearlman, J. S. (2003). Preprocessing eo1 hyperion hyperspectral data to support the application of agricultural indexes. IEEE Transactions on Geoscience and Remote Sensing, 41(6), 1246-1259. · doi:10.1109/TGRS.2003.813206
[8] Dong, L., Lu, S., & Jin, X. (2014). Real-time image-based chinese ink painting rendering. Multimedia Tools and Applications, 69(3), 605-620. · doi:10.1007/s11042-012-1126-9
[9] Eismann, M. T., Stocker, A. D., & Nasrabadi, N. M. (2009). Automated hyperspectral cueing for civilian search and rescue. Proceedings of IEEE, 97(6), 1031-1055. · doi:10.1109/JPROC.2009.2013561
[10] Fan, N. M., Hui, N. M., & Jin, N. M. (2015). A novel method of converting photograph into Chinese ink painting. IEEJ Transactions on Electrical and Electronic Engineering, 10(4), 320-329.
[11] Han, J., He, S., Qian, X., Wang, D., Guo, L., & Liu, T. (2013). An object-oriented visual saliency detection framework based on sparse coding representations. IEEE Transactions on Circuits and Systems for Video Technology, 23(12), 2009-2021.
[12] Han, J., Zhang, D., Cheng, G., Guo, L., & Ren, J. (2015a). Object detection in optical remote sensing images based on weakly supervised learning and high-level feature learning. IEEE Transactions on Geoscience and Remote Sensing, 53(6), 3325-3337.
[13] Han, J., Zhang, D., Hu, X., Guo, L., Ren, J., & Wu, F. (2014a). Background prior-based salient object detection via deep reconstruction residual. IEEE Transactions on Circuits & Systems for Video Technology, 25(8), 1-1.
[14] Han, J., Zhang, D., Wen, S., & Guo, L. (2015b). Two-stage learning to predict human eye fixations via SDAEs. IEEE Transactions on Cybernetics, 46(2), 487-498.
[15] Han, J., Zhou, P., Zhang, D., Cheng, G., Guo, L., Liu, Z., et al. (2014b). Efficient, simultaneous detection of multi-class geospatial targets based on visual saliency modeling and discriminative learning of sparse coding. ISPRS Journal of Photogrammetry & Remote Sensing, 89(1), 37-48.
[16] Hörig, B., Kühn, F., Oschütz, F., & Lehmann, F. (2001). Hymap hyperspectral remote sensing to detect hydrocarbons. International Journal of Remote Sensing, 22(8), 1413-1422. · doi:10.1080/01431160120909
[17] Jin, J., Fu, K., & Zhang, C. (2014). Traffic sign recognition with hinge loss trained convolutional neural networks. IEEE Transaction on Intelligent Transportation Systems, 19(5), 1991-2000. · doi:10.1109/TITS.2014.2308281
[18] Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. Advances in Neural Information Processing Systems, 25, 2012.
[19] Lee, H., Grosse, R., Ranganath, R., & Ng, A. Y. (2009). Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations. In Proceedings of ICML, pp. 609-616.
[20] Liu, N., Han, J., Zhang, D., Wen, S., & Liu, T. (2015). Predicting eye fixations using convolutional neural networks. In: CVPR.
[21] Manolakis, D., & Shaw, G. (2002). Detection algorithms for hyperspectral imaging applications. IEEE Signal Processing Magazine, 19(1), 29-43. · doi:10.1109/79.974724
[22] Mao, Q., Dong, M., Huang, Z., & Zhan, Y. (2014). Learning salient features for speech emotion recognition using convolutional neural networks. IEEE Transaction on Multimedia, 16(8), 2203-2213. · doi:10.1109/TMM.2014.2360798
[23] Meijun, S., Zheng, W., & Jizhou, S. (2015). What’s wrong with murals at mogao grottoes: a near-infrared hyperspectral image method. Scientific Reports, 5(9), 1-10.
[24] Mishra, P., Herrero-Langreo, A., Roger, J. M., Gorretta, N., Lleó, L., Diezma, B., et al. (2015). Detection and quantification of peanut traces in wheat flour by near infrared hyperspectral imaging spectroscopy using principal-component analysis. Journal of Near Infrared Spectroscopy, 23(1), 15-22. · doi:10.1255/jnirs.1141
[25] Patel, N. K., Patnaik, C., Dutta, S., Shekh, A. M., & Dave, A. J. (2001). Study of crop growth parameters using airborne imaging spectrometer data. International Journal of Remote Sensing, 22(12), 2401-2411. · doi:10.1080/01431160117383
[26] Qiao, T., Ren, J., Craigie, C., Zabalza, Z., Maltin, C., & Marshal, S. (2015). The use of small training sets containingmixed pixels for accurate hard image classification: Training on mixed spectral responses for classification by a svm. Journal of Applied Spectroscopy, 82(1), 137-144. · doi:10.1007/s10812-015-0076-1
[27] Ren, J., Zabalza, Z., Marshall, S., & Zheng, J. (2014). Effective feature extraction and data reduction with hyperspectral imaging in remote sensing. IEEE Signal Processing Magazine, 31(4), 149-154.
[28] Rokach, L., & Maimon, O. (2005). Top-down induction of decision trees classifiers: A survey. IEEE Transactions on Systems, 35(4), 476-487.
[29] Schölkopf, B., & Smola, A. J. (2002). Learning with kernels. Cambridge, MA: MIT Press. · Zbl 1019.68094
[30] Stein, D. W. J., Beaven, S. G., Hoff, L. E., & Winter, E. M. (2002). Anomaly detection from hyperspectral imagery. IEEE Signal Processing Magazine, 19(1), 58-69. · doi:10.1109/79.974730
[31] Sun, Y., Tao, X., Li, Y., & Lu, J. (2015). Robust 2D principal component analysis: A structured sparsity regularized approach. IEEE Transactions on Image Processing, 24(8), 2515-2526. · Zbl 1326.33025 · doi:10.1109/TIP.2015.2424316
[32] Vapnik, V. N. (1995). The nature of statistical learning theory. Neural Networks IEEE Transactions on, 10(5), 988-999. · Zbl 0833.62008 · doi:10.1109/72.788640
[33] Wang, J., Yang, J., Yu, K., Lv, F., Huang, T., & Gong, Y. (2010). Locality constrained linear coding for image classification. In Proceedings of IEEE conference on CVPR, pp. 3360-3367.
[34] Yahong, H., Yi, Y., Fei, W., Richang, H. (2015a). Compact and discriminative descriptor inference using multi-cues. IEEE Transactions on Image Processing, 24(12), 5114-5126. · Zbl 1408.94229
[35] Yahong, H., Yi, Y., Yan, Y., Zhigang, M., Nicu, S., Xiaofang, Z. (2015b). Semisupervised feature selection via spline regression for video semantic recognition. IEEE Transactions on Neural Networks and Learning Systems, 26(2), 252-264.
[36] Yang, J., Yu, K., Gong, Y., & Huang, T. (2009). Linear spatial pyramid matching using sparse coding for image classification. In Proceedings of IEEE conference on CVPR, pp. 1794- 801.
[37] Zhang, D., Han, J., Cheng, G., Liu, Z., Bu, S., & Guo, L. (2015). Weakly supervised learning for target detection in remote sensing images. IEEE Geoscience and Remote Sensing Letters, 12(4), 701-705. · doi:10.1109/LGRS.2014.2358994
[38] Zhang, Y., Miao, Z., Liu, Y., & Zhou, W. (2012). An Ink-diffusion-based rendering method For Chinese ink painting. 4th international conference on digital image processing (ICDIP).
[39] Zabalza, J., Ren, J., Zheng, J., Han, J., Zhao, H., Li, S., et al. (2015). Novel two dimensional singular spectrum analysis for effective feature extraction and data classification in hyperspectral imaging. IEEE Transactions on Geoscience and Remote Sensing, 53(8), 1-16. · doi:10.1109/TGRS.2015.2398468
[40] Zheng, W., & Meijun, S. (2012). Automatically fast determining of feature number of ranking-based feature selection. Electronics Letters, 48(23), 1462-1463.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.