Skip to main content
Log in

Fake modern Chinese painting identification based on spectral–spatial feature fusion on hyperspectral image

  • Published:
Multidimensional Systems and Signal Processing Aims and scope Submit manuscript

Abstract

Chinese painting is famous and valuable for special painting materials, skills and final art effects used, yet this has resulted in many fake paintings being produced. Those fake paintings were normally made by using modern high resolution scanning and printing technology, thus it is very hard to identify the fake ones by human vision. To address this challenging problem, in this paper, a hyperspectral image based features fusion method is proposed. Firstly, we scan Chinese paintings using a visual band hyperspectral camera with the spectral frequency ranging from 400 to 900 nm. Then, the spectral and spatial features are extracted respectively by using the principal component analysis and a convolution neural network. Finally, we fuse these two kinds of features and input the feature set into a support vector machines for classification. All samples of real and fake paintings are obtained from local Chinese painting organization. The experimental result shows the effectiveness of the proposed method with an accuracy achieved of 84.6 %, which is significantly higher than other approaches where only spectral or spatial feature is used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Borengasser, M., Hungate, W. S., & Watkins, R. (2008). Hyperspectral remote sensing-principles and applications (p. 2008). Boca Raton, FL: CRC Press.

    Google Scholar 

  • Boser, B. E., Guyon, I. M., & Vapnik, V. N. (1992). A training algorithm for optimal margin classifiers. In Proceedings of annual workshop on computational learning theroy, pp. 144–152.

  • Boureau, Y.-L., Bach, F., LeCun, Y., & Ponce, J. (2010). Learning midlevel features for recog-nition. In Proceedings of IEEE Conference on CVPR, pp. 2559-2566.

  • Bovolo, F., Bruzzone, L., & Carlin, L. (2010). A novel technique for subpixel image classification based on support vector machine. IEEE Transactions on Image Processing, 19(11), 2983–2999.

    Article  MathSciNet  Google Scholar 

  • Cheng, G., Han, J., Guo, L., Liu, Z., Bu, S., & Ren, J. (2015). Effective and efficient midlevel visual elements-oriented land-use classification using vhr remote sensing images. IEEE Transactions on Geoscience & Remote Sensing, 53(8), 1–12.

    Article  Google Scholar 

  • Cheng, G., Han, J. W., Zhou, P. C., & Guo, L. (2014). Multi-class geospatial object detection and geographic image classification based on collection of part detectors. ISPRS Journal of Photogrammetry & Remote Sensing, 98(1), 119132.

    Google Scholar 

  • Datt, B., McVicar, T. R., Niel, T. G. V., Jupp, D. L. B., & Pearlman, J. S. (2003). Preprocessing eo1 hyperion hyperspectral data to support the application of agricultural indexes. IEEE Transactions on Geoscience and Remote Sensing, 41(6), 1246–1259.

    Article  Google Scholar 

  • Dong, L., Lu, S., & Jin, X. (2014). Real-time image-based chinese ink painting rendering. Multimedia Tools and Applications, 69(3), 605–620.

    Article  MathSciNet  Google Scholar 

  • Eismann, M. T., Stocker, A. D., & Nasrabadi, N. M. (2009). Automated hyperspectral cueing for civilian search and rescue. Proceedings of IEEE, 97(6), 1031–1055.

    Article  Google Scholar 

  • Fan, N. M., Hui, N. M., & Jin, N. M. (2015). A novel method of converting photograph into Chinese ink painting. IEEJ Transactions on Electrical and Electronic Engineering, 10(4), 320–329.

    Google Scholar 

  • Han, J., He, S., Qian, X., Wang, D., Guo, L., & Liu, T. (2013). An object-oriented visual saliency detection framework based on sparse coding representations. IEEE Transactions on Circuits and Systems for Video Technology, 23(12), 2009–2021.

  • Han, J., Zhang, D., Cheng, G., Guo, L., & Ren, J. (2015a). Object detection in optical remote sensing images based on weakly supervised learning and high-level feature learning. IEEE Transactions on Geoscience and Remote Sensing, 53(6), 3325–3337.

  • Han, J., Zhang, D., Hu, X., Guo, L., Ren, J., & Wu, F. (2014a). Background prior-based salient object detection via deep reconstruction residual. IEEE Transactions on Circuits & Systems for Video Technology, 25(8), 1–1.

  • Han, J., Zhang, D., Wen, S., & Guo, L. (2015b). Two-stage learning to predict human eye fixations via SDAEs. IEEE Transactions on Cybernetics, 46(2), 487–498.

  • Han, J., Zhou, P., Zhang, D., Cheng, G., Guo, L., Liu, Z., et al. (2014b). Efficient, simultaneous detection of multi-class geospatial targets based on visual saliency modeling and discriminative learning of sparse coding. ISPRS Journal of Photogrammetry & Remote Sensing, 89(1), 37–48.

  • Hörig, B., Kühn, F., Oschütz, F., & Lehmann, F. (2001). Hymap hyperspectral remote sensing to detect hydrocarbons. International Journal of Remote Sensing, 22(8), 1413–1422.

    Article  Google Scholar 

  • Jin, J., Fu, K., & Zhang, C. (2014). Traffic sign recognition with hinge loss trained convolutional neural networks. IEEE Transaction on Intelligent Transportation Systems, 19(5), 1991–2000.

    Article  Google Scholar 

  • Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. Advances in Neural Information Processing Systems, 25, 2012.

    Google Scholar 

  • Lee, H., Grosse, R., Ranganath, R., & Ng, A. Y. (2009). Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations. In Proceedings of ICML, pp. 609-616.

  • Liu, N., Han, J., Zhang, D., Wen, S., & Liu, T. (2015). Predicting eye fixations using convolutional neural networks. In: CVPR.

  • Manolakis, D., & Shaw, G. (2002). Detection algorithms for hyperspectral imaging applications. IEEE Signal Processing Magazine, 19(1), 29–43.

    Article  Google Scholar 

  • Mao, Q., Dong, M., Huang, Z., & Zhan, Y. (2014). Learning salient features for speech emotion recognition using convolutional neural networks. IEEE Transaction on Multimedia, 16(8), 2203–2213.

    Article  Google Scholar 

  • Meijun, S., Zheng, W., & Jizhou, S. (2015). What’s wrong with murals at mogao grottoes: a near-infrared hyperspectral image method. Scientific Reports, 5(9), 1–10.

    Google Scholar 

  • Mishra, P., Herrero-Langreo, A., Roger, J. M., Gorretta, N., Lleó, L., Diezma, B., et al. (2015). Detection and quantification of peanut traces in wheat flour by near infrared hyperspectral imaging spectroscopy using principal-component analysis. Journal of Near Infrared Spectroscopy, 23(1), 15–22.

    Article  Google Scholar 

  • Patel, N. K., Patnaik, C., Dutta, S., Shekh, A. M., & Dave, A. J. (2001). Study of crop growth parameters using airborne imaging spectrometer data. International Journal of Remote Sensing, 22(12), 2401–2411.

    Article  Google Scholar 

  • Qiao, T., Ren, J., Craigie, C., Zabalza, Z., Maltin, C., & Marshal, S. (2015). The use of small training sets containingmixed pixels for accurate hard image classification: Training on mixed spectral responses for classification by a svm. Journal of Applied Spectroscopy, 82(1), 137–144.

    Article  Google Scholar 

  • Ren, J., Zabalza, Z., Marshall, S., & Zheng, J. (2014). Effective feature extraction and data reduction with hyperspectral imaging in remote sensing. IEEE Signal Processing Magazine, 31(4), 149–154.

  • Rokach, L., & Maimon, O. (2005). Top-down induction of decision trees classifiers: A survey. IEEE Transactions on Systems, 35(4), 476–487.

    Google Scholar 

  • Schölkopf, B., & Smola, A. J. (2002). Learning with kernels. Cambridge, MA: MIT Press.

    MATH  Google Scholar 

  • Stein, D. W. J., Beaven, S. G., Hoff, L. E., & Winter, E. M. (2002). Anomaly detection from hyperspectral imagery. IEEE Signal Processing Magazine, 19(1), 58–69.

    Article  Google Scholar 

  • Sun, Y., Tao, X., Li, Y., & Lu, J. (2015). Robust 2D principal component analysis: A structured sparsity regularized approach. IEEE Transactions on Image Processing, 24(8), 2515–2526.

    Article  MathSciNet  Google Scholar 

  • Vapnik, V. N. (1995). The nature of statistical learning theory. Neural Networks IEEE Transactions on, 10(5), 988–999.

    Article  MathSciNet  MATH  Google Scholar 

  • Wang, J., Yang, J., Yu, K., Lv, F., Huang, T., & Gong, Y. (2010). Locality constrained linear coding for image classification. In Proceedings of IEEE conference on CVPR, pp. 3360-3367.

  • Yahong, H., Yi, Y., Fei, W., Richang, H. (2015a). Compact and discriminative descriptor inference using multi-cues. IEEE Transactions on Image Processing, 24(12), 5114–5126.

  • Yahong, H., Yi, Y., Yan, Y., Zhigang, M., Nicu, S., Xiaofang, Z. (2015b). Semisupervised feature selection via spline regression for video semantic recognition. IEEE Transactions on Neural Networks and Learning Systems, 26(2), 252–264.

  • Yang, J., Yu, K., Gong, Y., & Huang, T. (2009). Linear spatial pyramid matching using sparse coding for image classification. In Proceedings of IEEE conference on CVPR, pp. 1794- 801.

  • Zhang, D., Han, J., Cheng, G., Liu, Z., Bu, S., & Guo, L. (2015). Weakly supervised learning for target detection in remote sensing images. IEEE Geoscience and Remote Sensing Letters, 12(4), 701–705.

    Article  Google Scholar 

  • Zhang, Y., Miao, Z., Liu, Y., & Zhou, W. (2012). An Ink-diffusion-based rendering method For Chinese ink painting. 4th international conference on digital image processing (ICDIP).

  • Zabalza, J., Ren, J., Zheng, J., Han, J., Zhao, H., Li, S., et al. (2015). Novel two dimensional singular spectrum analysis for effective feature extraction and data classification in hyperspectral imaging. IEEE Transactions on Geoscience and Remote Sensing, 53(8), 1–16.

    Article  Google Scholar 

  • Zheng, W., & Meijun, S. (2012). Automatically fast determining of feature number of ranking-based feature selection. Electronics Letters, 48(23), 1462–1463.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meijun Sun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Lu, D., Zhang, D. et al. Fake modern Chinese painting identification based on spectral–spatial feature fusion on hyperspectral image. Multidim Syst Sign Process 27, 1031–1044 (2016). https://doi.org/10.1007/s11045-016-0429-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11045-016-0429-9

Keywords

Navigation