×

Simulation of rarefied gas flows on the basis of the Boltzmann kinetic equation solved by applying a conservative projection method. (English. Russian original) Zbl 1381.76321

Comput. Math. Math. Phys. 56, No. 6, 996-1011 (2016); translation from Zh. Vychisl. Mat. Mat. Fiz. 56, No. 6, 1008-1024 (2016).
Summary: Flows of a simple rarefied gas and gas mixtures are computed on the basis of the Boltzmann kinetic equation, which is solved by applying various versions of the conservative projection method, namely, a two-point method for a simple gas and gas mixtures with a small difference between the molecular masses and a multipoint method in the case of a large mass difference. Examples of steady and unsteady flows are computed in a wide range of Mach and Knudsen numbers.

MSC:

76P05 Rarefied gas flows, Boltzmann equation in fluid mechanics
82C40 Kinetic theory of gases in time-dependent statistical mechanics
Full Text: DOI

References:

[1] O. M. Belotserkovskii and V. E. Yanitskii, “The statistical particles-in-cells method for solving rarefied gas dynamics problems,” USSR Comput. Math. Math. Phys. 15 (5), 101-114 (1975). · Zbl 0338.76044 · doi:10.1016/0041-5553(75)90108-1
[2] A. Nordsieck and B. L. Hicks, “Monte Carlo evaluation of the Boltzmann collision integral,” Rarefied Gas Dyn. 1, 695-710 (1967).
[3] V. V. Aristov and F. G. Cheremisin, “The conservative splitting method for solving Boltzmann’s equation,” USSR Comput. Math. Math. Phys. 20 (1), 208-225 (1980). · Zbl 0458.76061 · doi:10.1016/0041-5553(80)90074-9
[4] Tcheremissine, F. G., Conservative discrete ordinates method for solving Boltzmann kinetic equation (1996), Moscow
[5] F. G. Cheremisin, “Conservative method of calculating the Boltzmann collision integral,” Phys. Dokl. 42 (1), 607-610 (1997). · Zbl 0921.76148
[6] F. G. Cheremisin, “Solving the Boltzmann equation in the case of passing to the hydrodynamic flow regime,” Phys. Dokl. 45 (8), 401-404 (2000). · doi:10.1134/1.1310733
[7] F. G. Tcheremissine, “Solution to the Boltzmann kinetic equation for high-speed flows,” Comput. Math. Math. Phys. 46 (2), 315-329 (2006). · Zbl 1210.76149 · doi:10.1134/S0965542506020138
[8] A. A. Raines, “A method for solving Boltzmann’s equation for a gas mixture in the case of cylindrical symmetry in the velocity space,” Comput. Math. Math. Phys. 42 (8), 1212-1223 (2002). · Zbl 1056.35117
[9] Dodulad, O. I.; Tcheremissine, F. G., Multipoint conservative projection method for computing the Boltzmann collision integral for gas mixtures, 302-309 (2012)
[10] F. G. Tcheremissine, “Method for solving the Boltzmann kinetic equation for polyatomic gases,” Comput. Math. Math. Phys. 52 (2), 252-268 (2012). · Zbl 1249.82002 · doi:10.1134/S0965542512020054
[11] Yu. A. Anikin and O. I. Dodulad, “Solution of a kinetic equation for diatomic gas with the use of differential scattering cross sections computed by the method of classical trajectories,” Comput. Math. Math. Phys. 53 (7), 1026-1043 (2013). · Zbl 1299.82005 · doi:10.1134/S096554251307004X
[12] V. V. Aristov and F. G. Cheremisin, “Splitting the inhomogeneous kinetic operator of the Boltzmann equation,” Dokl. Akad. Nauk SSSR 231 (1), 49-52 (1976). · Zbl 0364.76071
[13] A. V. Bobylev and T. Ohwada, “On the generalization of Strang’s splitting scheme,” Riv. Math. Univ. Parma 6 (2), 235-243 (1999). · Zbl 0959.65073
[14] N. M. Korobov, Number-Theoretic Methods in Approximate Analysis (Fizmatgiz, Moscow, 1963) [in Russian]. · Zbl 0115.11703
[15] Y. A. Anikin, O. I. Dodulad, Y. Y. Kloss, D. V. Martynov, P. V. Shuvalov, and F. G. Tcheremissine, “Development of applied software for analysis of gas flows in vacuum devices,” Vacuum 86 (11), 1770-1777 (2012). · Zbl 1268.54021 · doi:10.1016/j.vacuum.2012.02.024
[16] Bazhenov, I. I.; Dodulad, O. I.; Ivanova, I. D.; Kloss, Y. Y.; Rjabchenkov, V. V.; Shuvalov, P. V.; Tcheremissine, F. G., Problem solving environment for gas flow simulation in micro structures on the basis of the Boltzmann equation, 246-257 (2013)
[17] Yu. Yu. Kloss, N. I. Khokhlov, F. G. Tcheremissine, and B. A. Shurygin, “Development of numerical schemes for solving kinetic equations in cluster environments on the basis of MPI technology,” Inf. Protsessy 7 (4), 425-431 (2007).
[18] Yu. Yu. Kloss, P. V. Shuvalov, and F. G. Tcheremissine, “Solving Boltzmann equation on GPU,” Proc. Computer Sci. ICCS 1 (1), 1077-1085 (2010). · Zbl 1201.76238
[19] O. I. Dodulad and F. G. Tcheremissine, “Computation of a shock wave structure in monatomic gas with accuracy control,” Comput. Math. Math. Phys. 53 (6), 827-844 (2013). · Zbl 1299.76123 · doi:10.1134/S0965542513060055
[20] H. Alsmeyer, “Density profiles in argon and nitrogen shock waves measured by the absorption of an electron beam,” J. Fluid Mech. 74, 497-513 (1976). · doi:10.1017/S0022112076001912
[21] W. Garen, R. Synofzik, and A. Frohn, “Shock tube for generation of weak shock waves,” AIAA J. 12, 1132-1134 (1974). · doi:10.2514/3.49425
[22] V. Yu. Velikodnyi, A. V. Emel’yanov, and A. V. Eremin, “Diabatic excitation of iodine molecules in the translational nonequilibrium zone of a shock wave,” Tech. Phys. 44 (10), 1150-1158 (1999). · doi:10.1134/1.1259489
[23] O. I. Dodulad, Yu. Yu. Kloss, and F. G. Tcheremissine, “Computation of shock wave structure in a gas mixture by solving the Boltzmann equation,” Fiz.-Khim. Kinetika Gaz. Din. 14 (1), 1-18 (2013).
[24] Gmurczyk, A. S.; Tarczynski, M.; Walenta, Z. A., Shock wave structure in the binary mixtures of gases with disparate molecular masses, 333-341 (1978)
[25] C. Chung, K. J. D. Wittt, D. Jeng, and P. F. Penko, “Internal structure of shock waves in disparate mass mixture,” J. Thermophys. 7 (4), 742-744 (1993). · doi:10.2514/3.490
[26] Miyoshi, N.; etal., Development of ultra small shock tube for high energy molecular beam source, 557-562 (2009)
[27] Yu. Yu. Kloss, F. G. Tcheremissine, and P. V. Shuvalov, “Solution of the Boltzmann equation for unsteady flows with shock waves in narrow channels,” Comput. Math. Math. Phys. 50 (6), 1093-1103 (2010). · Zbl 1224.76092 · doi:10.1134/S096554251006014X
[28] J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird, Molecular Theory of Gases and Liquids (Wiley, New York, 1954; Inostrannaya Literatura, Moscow, 1961). · Zbl 0057.23402
[29] S. Takata, H. Sugimoto, and S. Kosuge, “Gas separation by means of the Knudsen compressor,” Eur. J. Mech. 26 (2), 155-181 (2007). · Zbl 1124.76048 · doi:10.1016/j.euromechflu.2006.05.002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.