×

Computation of a shock wave structure in monatomic gas with accuracy control. (Russian, English) Zbl 1299.76123

Zh. Vychisl. Mat. Mat. Fiz. 53, No. 6, 1008-1026 (2013); translation in Comput. Math. Math. Phys. 53, No. 6, 827-844 (2013).
Summary: The structure of a shock wave in a monatomic one-component gas was computed by solving the Boltzmann kinetic equation with accuracy controlled with respect to computational parameters. The hard-sphere molecular model and molecules with the Lennard-Jones potential were considered. The computations were performed in a wide range of Mach numbers with the accuracy no less than 3% for the shock front width and 1% for local values of density and temperature. The shock wave structure was studied in terms of macroscopic gas characteristics and in terms of the molecular velocity distribution function.

MSC:

76L05 Shock waves and blast waves in fluid mechanics
35Q20 Boltzmann equations
Full Text: DOI

References:

[1] H. Alsmeyer, “Density profiles in argon and nitrogen shock waves measured by the absorption of an electron beam,” J. Fluid Mech. 74, 497-513 (1976). · doi:10.1017/S0022112076001912
[2] W. Garen, R. Synofzik, and A. Frohn, “Shock tube for generation of weak shock waves,” AIAA J. 12, 1132-1134 (1974). · doi:10.2514/3.49425
[3] Hicks, B. L.; Yen, S. M., Solution of the nonlinear Boltzmann equation for plane shock waves (1969), New York
[4] F. G. Cheremisin, “Numerical solution of a kinetic Boltzmann equation for homogeneous stationary gas flows,” USSR Comput. Math. Math. Phys. 10(3), 125-137 (1970). · Zbl 0277.76074 · doi:10.1016/0041-5553(70)90119-9
[5] B. L. Hicks, S. M. Yen, and B. J. Reilly, “The internal structures of shock waves,” J. Fluid Mech. 53(1), 85-111 (1972). · Zbl 0242.76040 · doi:10.1017/S0022112072000059
[6] S. M. Yen and W. Ng, “Shock wave structure and intermolecular collision laws,” J. Fluid Mech. 65(1), 127-144 (1974). · Zbl 0344.76049 · doi:10.1017/S0022112074001297
[7] V. V. Aristov and F. G. Cheremisin, “Shock wave structure in a monatomic gas in the case of power-law interaction potentials,” Fluid Dyn. 17, 964-968 (1982). · doi:10.1007/BF01090397
[8] F. G. Tcheremissine, “Solution of Boltzmann equation for arbitrary molecular potentials,” Proceedings of the 21st International Symposium on RGD (Cepadues, 1999), Vol. 2, pp. 165-176.
[9] T. Ohwada, “Structure of normal shock waves: Direct numerical analysis of the Boltzmann equation for hard-sphere molecules,” Phys. Fluids 5, 217-234 (1993). · Zbl 0768.76027 · doi:10.1063/1.858777
[10] C. Cercignani, A. Frezzotti, and P. Grosfils, “The structure of infinitely strong shock wave,” Phys. Fluids 11, 2757-2764 (1999). · Zbl 1149.76336 · doi:10.1063/1.870134
[11] S. Takata, K. Aoki, and C. Cercignani, “The velocity distribution function in an infinitely strong shock wave,” Phys. Fluids 12, 2116-2127 (2000). · Zbl 1184.76541 · doi:10.1063/1.870457
[12] G. A. Bird, Molecular Gas Dynamics and the Direct Simulation of Gas Flows (Oxford Univ. Press, Oxford, 1994).
[13] I. N. Larina and V. A. Rykov, “Nonlinear nonequilibrium kinetic model of the Boltzmann equation for monatomic gases,” Comput. Math. Math. Phys. 51, 1962-1972 (2011). · Zbl 1249.76086 · doi:10.1134/S0965542511110133
[14] F. G. Cheremisin, “Conservative Method for Evaluating the Boltzmann Collision Integral,” Dokl. Phys. 42, 607-610 (1997). · Zbl 0921.76148
[15] F. G. Tcheremissine, “Solution to the Boltzmann kinetic equation for high-speed flows,” Comput. Math. Math. Phys. 46, 315-329 (2006). · Zbl 1210.76149 · doi:10.1134/S0965542506020138
[16] S. P. Popov and F. G. Cheremisin, “A conservative method for solving the Boltzmann equation with centrally symmetric interaction potentials,” Comput. Math. Math. Phys. 39, 156-169 (1999). · Zbl 0972.82070
[17] N. M. Korobov, Number-Theoretic Methods in Approximate Analysis (Fizmatgiz, Moscow, 1963) [in Russian]. · Zbl 0115.11703
[18] Yu. A. Anikin, “On the accuracy of the projection computation of the collision integral,” Comput. Math. Math. Phys. 52, 615-636 (2012). · Zbl 1274.82046 · doi:10.1134/S0965542512040021
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.