×

Application of the program package TURBO problem solver for some fluid dynamics problems. (English. Russian original) Zbl 1381.76011

Comput. Math. Math. Phys. 56, No. 6, 1162-1173 (2016); translation from Zh. Vychisl. Mat. Mat. Fiz. 56, No. 6, 1185-1196 (2016).
Summary: A technology for building parallel applications for numerical simulation based on hyperbolic partial differential equations is described. A formalization of problems and methods that makes it possible to describe new problems and methods for their solution by configuring the universal technology for specific cases is proposed. Results of numerical simulation of spatial flows in shear layers of a compressible inviscid perfect medium and of the Rayleigh-Taylor instability are presented.

MSC:

76-04 Software, source code, etc. for problems pertaining to fluid mechanics
76B47 Vortex flows for incompressible inviscid fluids

Software:

TURBO; TURBO1
Full Text: DOI

References:

[1] https://parallel.ru/tech/engineering/pacet2.html
[2] https://ru.wikipedia.org/wiki/Computer-aided_engineering
[3] O. M. Belotserkovskii, A. M. Oparin, and V. M. Chechetkin, Turbulence: New Approaches (Nauka, Moscow, 2002) [in Russian].
[4] T. E. Faber, Fluid Dynamics for physicists (Cambridge Univ. Press, Cambridge, 1995; Гидроаэродинамика. М.: Постмаркет, 2001. · Zbl 0861.76001 · doi:10.1017/CBO9780511806735
[5] P. R. Spalart, “Strategies for turbulence modeling and simulations,” Int. J. Heat Fluid Flow 21, 252-263 (2000). · doi:10.1016/S0142-727X(00)00007-2
[6] A. V. Garbaruk, M. Kh. Strelets, and M. L. Shur, The Capabilities and Limitations of Modern Approaches to the Simulation of Turbulence in Aerodynamics Computations, Textbook (St. Peterburg. Gos. Politekh. Univ., St. Petersburg, 2012) [in Russian].
[7] A. S. Kholodov, Numerical Methods for Hyperbolic Equations and Systems of Equations: A Survey (Mosc. Fiz.-Tekh. Inst., Moscow, 2000) [in Russiam].
[8] L. D. Landau and E. M. Lifshitz, Fluid Mechanics (Pergamon, London, 1959; Gostekhteorizdat, 1953). · Zbl 0146.22405
[9] L. G. Loitsyanskii, Mechanics of Liquids and Gases (Nauka, Moscow, 1978; Begell House, New York, 1995). · Zbl 0247.76001
[10] Fortova S.V., L. M. Kraginskii, A. V. Chikitkin, and E. I. Oparina, “Software package for solving hyperbolic type equations,” Math. Models Comput. Simul. 5, 607-619 (2013). · Zbl 1356.65276 · doi:10.1134/S2070048213060057
[11] V. M. Kovenya, and N. N. Yanenko, The Splitting Method in Fluid Dynamics (Nauka, Novosibirsk, 1981) [in Russian]. · Zbl 0507.76070
[12] P. L. Roe, “Approximate Riemann solvers, parameter vectors and difference scheme,” J. Comput. Phys. 43, 357-372 (1981). · Zbl 0474.65066 · doi:10.1016/0021-9991(81)90128-5
[13] K. M. Magometov and A. S. Kholodov, Grid-Characteristic Numerical Methods (Nauka, Moscow, 1987) [in Russian].
[14] P. L. Roe, “Characteristic-based schemes for the Euler equations,” Ann. Rev. Fluid Mech. 18, 337-365 (1986). · Zbl 0624.76093 · doi:10.1146/annurev.fl.18.010186.002005
[15] A. Harten, “High resolution schemes for hyperbolic conservation laws,” J. Comput. Phys. 49, 357-393 (1983). · Zbl 0565.65050 · doi:10.1016/0021-9991(83)90136-5
[16] J.Y. Yang, “Third-order nonoscillatory schemes for the Euler equations,” AIAA J. 29 1611-1618 (1991). · Zbl 0737.76053 · doi:10.2514/3.10782
[17] B. van Leer, “Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov’s method,” J. Comput. Phys. 32, 101-136 (1979). · Zbl 1364.65223 · doi:10.1016/0021-9991(79)90145-1
[18] Oparin, A. M., Numerical simulation of problems related to the intensive development of hydrodynamic instabilities, 63-90 (2000), Moscow
[19] O. M. Belotserkovskii and Yu. M. Davydov, The Method of Large Particles in Fluid Dynamics (Nauka, Moscow, 1982) [in Russian].
[20] K. Fletcher, Computational Techniques for Fluid Dynamics (Springer, New-York, 1991; Mir, Moscow, 1991). · Zbl 0717.76001 · doi:10.1007/978-3-642-58239-4
[21] G. Booch, Object-Oriented Design: With Applications (Benjamin, Redwood, 1991; Konkord, Moscow, 1992). · Zbl 0746.68017
[22] O. M. Belotserkovskii and S. V. Fortova, “Investigation of the cascade mechanism of turbulence development in free shear flow,” Dokl. Phys. 57, 110-113 (2012). · doi:10.1134/S1028335812030019
[23] S. V. Fortova, “Investigation of spectrum characteristics of the vortex cascades in shear flow,” Phys. Scripta 155, 014049-014051 (2013). · doi:10.1088/0031-8949/2013/T155/014049
[24] S. V. Fortova, “Numerical simulation of the three-dimensional Kolmogorov flow in a shear layer,” Comput. Math. Math. Phys. 53, 311-319 (2013). · Zbl 1274.76230 · doi:10.1134/S0965542513030056
[25] S. V. Fortova, “Eddy cascade of instabilities and transition to turbulence,” Comput. Math. Math. Phys. 54, 553-561 (2014). · Zbl 1313.76048 · doi:10.1134/S0965542514030051
[26] O. M. Belotserkovskii, V. A. Gushchin, and V. N. Kon’shin, “A splitting method for the investigation of flows in the stratified free surface fluid,” Zh. Vych. Mat. Mat. Fiz. 27 (4), 594-609 (1987). · Zbl 0664.76140
[27] G. Comte-Bellot, Écoulement turbulent entre deux parois parallèles (Service de documentation scientifique et technique de l’armement, Paris, 1965; Mir, Moscow, 1968).
[28] A. N. Kolmogorov, “The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers,” Dokl. Akad. Nauk SSSR 30, 453-466 (1941).
[29] A. M. Obukhov, “On the distribution of energy in the turbulence stream spectrum,” Izv. Akad. Nauk SSSR, Ser. Geogr. Gefiz. 5 (4), 453-466 (1941). · Zbl 0063.05996
[30] V. I. Arnol’d and L. D. Meshalkin, “Kolmogorov’s seminar on selected topics of calculus (1958-1959),” Usp. Mat. Nauk 15 (1), 247-250 (1960).
[31] O. M. Belotserkovskii and A. M. Oparin, Numerical Experiment in Turbulence: From Order to Chaos, 2nd ed. (Nauka, Moscow, 2000) [in Russian]. · Zbl 0999.76004
[32] O. M. Belotserkovskii, Yu. M. Davydov, and A. Yu. Dem’yanov, “The interaction of perturbation modes under the Rayleigh-Taylor instability,” Dokl. Akad. Nauk SSSR 288, 1071 (1986).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.