Skip to main content
Log in

Application of the program package TURBO problem solver for some fluid dynamics problems

  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

A technology for building parallel applications for numerical simulation based on hyperbolic partial differential equations is described. A formalization of problems and methods that makes it possible to describe new problems and methods for their solution by configuring the universal technology for specific cases is proposed. Results of numerical simulation of spatial flows in shear layers of a compressible inviscid perfect medium and of the Rayleigh–Taylor instability are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. https://parallel.ru/tech/engineering/pacet2.html

  2. https://ru.wikipedia.org/wiki/Computer-aided_engineering

  3. O. M. Belotserkovskii, A. M. Oparin, and V. M. Chechetkin, Turbulence: New Approaches (Nauka, Moscow, 2002) [in Russian].

    Google Scholar 

  4. T. E. Faber, Fluid Dynamics for physicists (Cambridge Univ. Press, Cambridge, 1995; Гидроаэродинамика. М.: Постмаркет, 2001.

    Book  MATH  Google Scholar 

  5. P. R. Spalart, “Strategies for turbulence modeling and simulations,” Int. J. Heat Fluid Flow 21, 252–263 (2000).

    Article  Google Scholar 

  6. A. V. Garbaruk, M. Kh. Strelets, and M. L. Shur, The Capabilities and Limitations of Modern Approaches to the Simulation of Turbulence in Aerodynamics Computations, Textbook (St. Peterburg. Gos. Politekh. Univ., St. Petersburg, 2012) [in Russian].

    Google Scholar 

  7. A. S. Kholodov, Numerical Methods for Hyperbolic Equations and Systems of Equations: A Survey (Mosc. Fiz.-Tekh. Inst., Moscow, 2000) [in Russiam].

    Google Scholar 

  8. L. D. Landau and E. M. Lifshitz, Fluid Mechanics (Pergamon, London, 1959; Gostekhteorizdat, 1953).

    MATH  Google Scholar 

  9. L. G. Loitsyanskii, Mechanics of Liquids and Gases (Nauka, Moscow, 1978; Begell House, New York, 1995).

    MATH  Google Scholar 

  10. Fortova S.V., L. M. Kraginskii, A. V. Chikitkin, and E. I. Oparina, “Software package for solving hyperbolic type equations,” Math. Models Comput. Simul. 5, 607–619 (2013).

    Article  MathSciNet  Google Scholar 

  11. V. M. Kovenya, and N. N. Yanenko, The Splitting Method in Fluid Dynamics (Nauka, Novosibirsk, 1981) [in Russian].

    MATH  Google Scholar 

  12. P. L. Roe, “Approximate Riemann solvers, parameter vectors and difference scheme,” J. Comput. Phys. 43, 357–372 (1981).

    Article  MathSciNet  MATH  Google Scholar 

  13. K. M. Magometov and A. S. Kholodov, Grid-Characteristic Numerical Methods (Nauka, Moscow, 1987) [in Russian].

    Google Scholar 

  14. P. L. Roe, “Characteristic-based schemes for the Euler equations,” Ann. Rev. Fluid Mech. 18, 337–365 (1986).

    Article  MathSciNet  MATH  Google Scholar 

  15. A. Harten, “High resolution schemes for hyperbolic conservation laws,” J. Comput. Phys. 49, 357–393 (1983).

    Article  MathSciNet  MATH  Google Scholar 

  16. J.Y. Yang, “Third-order nonoscillatory schemes for the Euler equations,” AIAA J. 29 1611–1618 (1991).

    Article  MATH  Google Scholar 

  17. B. van Leer, “Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov’s method,” J. Comput. Phys. 32, 101–136 (1979).

    Article  Google Scholar 

  18. A. M. Oparin, “Numerical simulation of problems related to the intensive development of hydrodynamic instabilities,” in Novelties inNumerical Simulation: Algorithms, Computational Experiments, and Results (Nauka, Moscow, 2000), pp. 63–90 [in Russian].

    Google Scholar 

  19. O. M. Belotserkovskii and Yu. M. Davydov, The Method of Large Particles in Fluid Dynamics (Nauka, Moscow, 1982) [in Russian].

    Google Scholar 

  20. K. Fletcher, Computational Techniques for Fluid Dynamics (Springer, New-York, 1991; Mir, Moscow, 1991).

    Book  MATH  Google Scholar 

  21. G. Booch, Object-Oriented Design: With Applications (Benjamin, Redwood, 1991; Konkord, Moscow, 1992).

    MATH  Google Scholar 

  22. O. M. Belotserkovskii and S. V. Fortova, “Investigation of the cascade mechanism of turbulence development in free shear flow,” Dokl. Phys. 57, 110–113 (2012).

    Article  Google Scholar 

  23. S. V. Fortova, “Investigation of spectrum characteristics of the vortex cascades in shear flow,” Phys. Scripta 155, 014049–014051 (2013).

    Article  Google Scholar 

  24. S. V. Fortova, “Numerical simulation of the three-dimensional Kolmogorov flow in a shear layer,” Comput. Math. Math. Phys. 53, 311–319 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  25. S. V. Fortova, “Eddy cascade of instabilities and transition to turbulence,” Comput. Math. Math. Phys. 54, 553–561 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  26. O. M. Belotserkovskii, V. A. Gushchin, and V. N. Kon’shin, “A splitting method for the investigation of flows in the stratified free surface fluid,” Zh. Vych. Mat. Mat. Fiz. 27 (4), 594–609 (1987).

    MathSciNet  Google Scholar 

  27. G. Comte-Bellot, Écoulement turbulent entre deux parois parallèles (Service de documentation scientifique et technique de l’armement, Paris, 1965; Mir, Moscow, 1968).

    Google Scholar 

  28. A. N. Kolmogorov, “The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers,” Dokl. Akad. Nauk SSSR 30, 453–466 (1941).

    MathSciNet  Google Scholar 

  29. A. M. Obukhov, “On the distribution of energy in the turbulence stream spectrum,” Izv. Akad. Nauk SSSR, Ser. Geogr. Gefiz. 5 (4), 453–466 (1941).

    Google Scholar 

  30. V. I. Arnol’d and L. D. Meshalkin, “Kolmogorov’s seminar on selected topics of calculus (1958–1959),” Usp. Mat. Nauk 15 (1), 247–250 (1960).

    Google Scholar 

  31. O. M. Belotserkovskii and A. M. Oparin, Numerical Experiment in Turbulence: From Order to Chaos, 2nd ed. (Nauka, Moscow, 2000) [in Russian].

    MATH  Google Scholar 

  32. O. M. Belotserkovskii, Yu. M. Davydov, and A. Yu. Dem’yanov, “The interaction of perturbation modes under the Rayleigh–Taylor instability,” Dokl. Akad. Nauk SSSR 288, 1071 (1986).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Belotserkovskaya.

Additional information

Original Russian Text © M.S. Belotserkovskaya, A.P. Pronina, S.V. Fortova, V.V. Shepelev, 2016, published in Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki, 2016, Vol. 56, No. 6, pp. 1185–1196.

To the memory of O.M. Belotserkovskii

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belotserkovskaya, M.S., Pronina, A.P., Fortova, S.V. et al. Application of the program package TURBO problem solver for some fluid dynamics problems. Comput. Math. and Math. Phys. 56, 1162–1173 (2016). https://doi.org/10.1134/S0965542516060075

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965542516060075

Keywords

Navigation