×

High order schemes for the tempered fractional diffusion equations. (English) Zbl 1347.65136

The authors study the tempered fractional diffusion equations. The high-order schemes for this system are designed by using Crank-Nicolson discretization in time, the tempered fractional calculus and the Grunwald type difference in space. The stability and convergence of the new derived numerical methods are presented.

MSC:

65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
34A08 Fractional ordinary differential equations
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
26A33 Fractional derivatives and integrals

References:

[1] Baeumera, B., Meerschaert, M.M.: Tempered stable Lévy motion and transient super-diffusion. J. Comput. Appl. Math. 233(10), 2438-2448 (2010) · Zbl 1423.60079 · doi:10.1016/j.cam.2009.10.027
[2] Buschman, R.G.: Decomposition of an integral operator by use of Mikusinski calculus. SIAM J. Math. Anal. 3(1), 83-85 (1972) · Zbl 0233.45019 · doi:10.1137/0503010
[3] Carmi, S., Turgeman, L., Barkai, E.: On distributions of functionals of anomalous diffusion paths. J. Stat. Phys. 141(6), 1071-1092 (2010) · Zbl 1205.82079 · doi:10.1007/s10955-010-0086-6
[4] Cartea, Á., del-Castillo-Negrete, D.: Fractional diffusion models of option prices in markets with jumps. Phys. A 374(2), 749-763 (2007) · doi:10.1016/j.physa.2006.08.071
[5] Cartea, Á., del-Castillo-Negrete, D.: Fluid limit of the continuous-time random walk with general Lévy jump distribution functions. Phys. Rev. E 76, 041105 (2007) · doi:10.1103/PhysRevE.76.041105
[6] del-Castillo-Negrete, D.: Truncation effects in superdiffusive front propagation with Lévy flights. Phys. Rev. E 79, 031120 (2009) · doi:10.1103/PhysRevE.79.031120
[7] Çelik, C., Duman, M.: Crank-Nicolson method for the fractional diffusion equation with the Riesz fractional derivative. J. Comput. Phys. 231(4), 1743-1750 (2012) · Zbl 1242.65157 · doi:10.1016/j.jcp.2011.11.008
[8] Chechkin, A.V., Gonchar, V.Yu., Klafter, J., Metzler, R.: Natural cutoff in Lévy flights caused by dissipative nonlinearity. Phys. Rev. E 72, 010101 (2005) · doi:10.1103/PhysRevE.72.010101
[9] Deng, W.H., Chen, M.H., Barkai, E.: Numerical algorithms for the forward and backward fractional Feynman-Kac equations. J. Sci. Comput. 62(3), 718-746 (2015) · Zbl 1335.65069 · doi:10.1007/s10915-014-9873-6
[10] Fornberg, B.: Calculation of weights in finite difference formulas. SIAM Rev. 40(3), 685-691 (1998) · Zbl 0914.65010 · doi:10.1137/S0036144596322507
[11] Golub, G.H., Van Loan, C.F.: Matrix Computations, 3rd edn. The Johns Hopkins University Press, Baltimore (1996) · Zbl 0865.65009
[12] Oldham, K.B., Spanier, J.: The Fractional Calculus. Academic, New York (1974) · Zbl 0292.26011
[13] Podlubny, I.: Fractional Differential Equations. Academic, San Diego (1999) · Zbl 0924.34008
[14] Samko, S., Kilbas, A., Marichev, O.: Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach, London (1993) · Zbl 0818.26003
[15] Srivastava, H.M., Buschman, R.G.: Convolution Integral Equations with Special Function Kernels. Wiley, New York (1977) · Zbl 0346.45010
[16] Lynch, V.E., Carreras, B.A., del-Castillo-Negrete, D., Ferreira-Mejias, K.M., Hicks, H.R.: Numerical methods for the solution of partial differential equations of fractional order. J. Comput. Phys. 192, 406-421 (2003) · Zbl 1047.76075 · doi:10.1016/j.jcp.2003.07.008
[17] Liu, F., Ahn, V., Turner, I.: Numerical solution of the space fractional Fokker-Planck equation. J. Comput. Appl. Math. 166(2), 209-219 (2004) · Zbl 1036.82019 · doi:10.1016/j.cam.2003.09.028
[18] Marom, O., Momoniat, E.: A comparison of numerical solutions of fractional diffusion models in finance. Nonl. Anal.: R.W.A. 10(6), 3435-3442 (2009) · Zbl 1180.91308 · doi:10.1016/j.nonrwa.2008.10.066
[19] Metzler, R., Klafter, J.: The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics. J. Phys. A 37(31), R161-R208 (2004) · Zbl 1075.82018 · doi:10.1088/0305-4470/37/31/R01
[20] Mantegna, R.N., Stanley, H.E.: Stochastic process with ultraslow convergence to a Gaussian: the truncated Lévy flight. Phys. Rev. Lett. 73(22), 2946-2949 (1994) · Zbl 1020.82610 · doi:10.1103/PhysRevLett.73.2946
[21] Meerschaert, M.M., Tadjeran, C.: Finite difference approximations for fractional advection-dispersion flow equations. J. Comput. Appl. Math. 172(1), 65-77 (2004) · Zbl 1126.76346 · doi:10.1016/j.cam.2004.01.033
[22] Meerschaert, M.M., Zhang, Y., Baeumer, B.: Tempered anomalous diffusion in heterogeneous systems. Geophys. Res. Lett. 35, L17403 (2009) · doi:10.1029/2008GL034899
[23] Meerschaert, M.M., Sikorskii, A.: Stochastic Models for Fractional Calculus. De Gruyter Studies in Mathematics, vol. 43. Walter de Gruyter, Berlin/Boston (2012) · Zbl 1247.60003
[24] Nasir, H.M., Gunawardana, B.L.K., Abeyrathna, H.M.N.P.: A second order finite difference approximation for the fractional siffusion equation. Inter. J. Appl. Phys. Math. 3, 237-243 (2013) · doi:10.7763/IJAPM.2013.V3.212
[25] Ortigueira, M.D.: Riesz potential operators and inverses via fractional centred derivatives. Int. J. Math. Math. Sci. 2006, 1-12 (2006) · Zbl 1122.26007 · doi:10.1155/IJMMS/2006/48391
[26] Pang, H.-K., Sun, H.W.: Multigrid method for fractional diffusion equations. J. Comput. Phys. 231(2), 693-703 (2012) · Zbl 1243.65117 · doi:10.1016/j.jcp.2011.10.005
[27] Podlubny, I.: Fractional Differential Equations. Academic, San Diego (1999) · Zbl 0924.34008
[28] Quarteroni, A., Sacco, R., Saleri, F.: Numerical Mathematics, 2nd edn. Springer, Berlin (2007) · Zbl 1136.65001 · doi:10.1007/b98885
[29] Sokolov, I.M., Chechkin, A.V., Klafter, J.: Fractional diffusion equation for a power-law-truncated Lévy process. Phys. A 336(3), 245-251 (2004) · doi:10.1016/j.physa.2003.12.044
[30] Sousa, E., Li, C.: A weighted finite difference method for the fractional diffusion equation based on the Riemann-Liouville derivative. Appl. Numer. Math. 90, 22-37 (2015) · Zbl 1326.65111 · doi:10.1016/j.apnum.2014.11.007
[31] Tian, W.Y., Zhou, H., Deng, W.H.: A class of second order difference approximations for solving space fractional diffusion equations. Math. Comp. 84, 1703-1727 (2015) · Zbl 1318.65058
[32] Varga, R.S.: Matrix Iterative Analysis. Springer, Berlin (2000) · Zbl 0998.65505 · doi:10.1007/978-3-642-05156-2
[33] Wang, H., Wang, K., Sircar, T.: A direct Nlog2N finite difference method for fractional diffusion equations. J. Comput. Phys. 229(21), 8095-8104 (2010) · Zbl 1198.65176 · doi:10.1016/j.jcp.2010.07.011
[34] Zhao, L.J., Deng, W.H.: A series of high order quasi-compact schemes for space fractional diffusion equations based on the superconvergent approximations for fractional derivatives. Numer. Methods Partial Differential Equations 31, 1345-1381 (2015) · Zbl 1332.65131
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.