×

On the Gause predator-prey model with a refuge: a fresh look at the history. (English) Zbl 1331.92128

Summary: This article re-analyses a prey-predator model with a refuge introduced by one of the founders of population ecology Gause and his co-workers to explain discrepancies between their observations and predictions of the Lotka-Volterra prey-predator model. They replaced the linear functional response used by Lotka and Volterra by a saturating functional response with a discontinuity at a critical prey density. At concentrations below this critical density prey were effectively in a refuge while at a higher densities they were available to predators. Thus, their functional response was of the Holling type III. They analyzed this model and predicted existence of a limit cycle in predator-prey dynamics. In this article I show that their model is ill posed, because trajectories are not well defined. Using the Filippov method, I define and analyze solutions of the Gause model. I show that depending on parameter values, there are three possibilities: (1) trajectories converge to a limit cycle, as predicted by Gause, (2) trajectories converge to an equilibrium, or (3) the prey population escapes predator control and grows to infinity.

MSC:

92D25 Population dynamics (general)
92D15 Problems related to evolution

Software:

SlideCont; TC-HAT
Full Text: DOI

References:

[1] Aubin, J.-P.; Cellina, A., Differential Inclusions (1984), Springer-Verlag: Springer-Verlag Berlin, Germany · Zbl 0538.34007
[2] Casey, G.; de Jong, H.; Gouzé, J.-L., Piecewise-linear models of genetic regulatory networks: equilibria and their stability, Journal of Mathematical Biology, 52, 27-56 (2006) · Zbl 1091.92030
[3] Colombo, R.; Křivan, V., Selective strategies in food webs, IMA Journal of Mathematics Applied in Medicine and Biology, 10, 281-291 (1993) · Zbl 0807.92025
[4] Crowley, P. H., Dispersal and the stability of predator-prey interactions, The American Naturalist, 118, 673-701 (1981)
[5] de Jong, H.; Gouz’e, J.-L.; Hernandez, C.; Page, M.; Sari, T.; Geiselmann, J., Qualitative simulation of genetic regulatory networks using piecewise-linear models, Bulletin of Mathematical Biology, 66, 301-340 (2004) · Zbl 1334.92282
[6] Dercole, F.; Gragnani, A.; Rinaldi, S., Bifurcation analysis of piecewise smooth ecological models, Theoretical Population Biology, 72, 2, 197-213 (2007) · Zbl 1123.92035
[7] Dercole, F., Kuznetsov, Y.A., 2004. User guide to SlideCont 2.0. Department of Mathematics, Utrecht University, The Netherlands \(\langle\) http://www.math.uu.nl/people/kuznet/cm/slidecont.pdf \(\rangle \); Dercole, F., Kuznetsov, Y.A., 2004. User guide to SlideCont 2.0. Department of Mathematics, Utrecht University, The Netherlands \(\langle\) http://www.math.uu.nl/people/kuznet/cm/slidecont.pdf \(\rangle \)
[8] Dercole, F.; Kuznetsov, Y. A., SlideCont: an Auto97 driver for bifurcation analysis of Filippov systems, ACM Transactions on Mathematical Software, 31, 95-119 (2005) · Zbl 1073.65070
[9] Dulac, H., Recherche des cycles limites, Comptes Rendus Hebdomadaires des Séances de L’Académie des Sciences, 204, 1703-1706 (1937) · Zbl 0016.40003
[10] Edwards, R., Analysis of continuous-time switching networks, Physica D, 146, 165-199 (2000) · Zbl 0986.94051
[11] Filippov, A. F., Differential equations with discontinuous right-hand side, Matematicheskii sbornik, 51, 99-128 (1960), (in Russian. English translation published in American Mathematical Society Translations, Series 2, 1964, pp. 199-231) · Zbl 0138.32204
[12] Filippov, A. F., Differential Equations with Discontinuous Righthand Sides (1988), Kluwer Academic Publishers: Kluwer Academic Publishers Dordrecht · Zbl 0664.34001
[13] Gause, G. F., The Struggle for Existence (1934), Williams and Wilkins: Williams and Wilkins Baltimore
[14] Gause, G. F.; Smaragdova, N. P.; Witt, A. A., Further studies of interaction between predators and prey, The Journal of Animal Ecology, 5, 1-18 (1936)
[15] Gouzé, J. L.; Sari, T., A class of piecewise linear differential equations arising in biological models, Dynamical Systems—an International Journal, 17, 299-316 (2003) · Zbl 1054.34013
[16] Hassell, M. P., The Dynamics of Arthropod Predator-prey Systems (1978), Princeton University Press: Princeton University Press Princeton, NJ, USA · Zbl 0429.92018
[17] Hassell, M. P.; May, R. M., Stability in insect host-parasite models, Journal of Animal Ecology, 42, 693-736 (1973)
[18] Hochberg, M. E.; Holt, R., Refuge evolution and the population dynamics of coupled host-parasitoid associations, Evolutionary Ecology, 9, 633-661 (1995)
[19] Hofbauer, J.; Sigmund, K., Evolutionary Games and Population Dynamics (1998), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0914.90287
[20] Holling, C. S., Some characteristics of simple types of predation and parasitism, The Canadian Entomologist, 91, 385-398 (1959)
[21] Huang, X. C.; Merrill, S. J., Conditions for uniqueness of limit cycles in general predator-prey systems, Mathematical Biosciences, 96, 47-60 (1989) · Zbl 0676.92008
[22] Ives, A. R.; Dobson, A. P., Antipredator behaviour and the population dynamics of simple predator-prey systems, The American Naturalist, 130, 431-447 (1987)
[23] Kuznetsov, Y. A.; Rinaldi, S.; Gragnani, A., One-parameter bifurcations in planar Filippov systems, International Journal of Bifurcation and Chaos, 13, 2157-2188 (2003) · Zbl 1079.34029
[24] Křivan, V., Optimal foraging and predator-prey dynamics, Theoretical Population Biology, 49, 265-290 (1996) · Zbl 0870.92019
[25] Křivan, V., Effects of optimal antipredator behavior of prey on predator-prey dynamics: role of refuges, Theoretical Population Biology, 53, 131-142 (1998) · Zbl 0945.92021
[26] Křivan, V., The Lotka-Volterra predator-prey model with foraging-predation risk trade-offs, American Naturalist, 170, 771-782 (2007)
[27] Křivan, V., Prey-predator models, (Jorgensen, S. E.; Fath, B. D., Encyclopedia of Ecology, vol. 4 (2008), Elsevier: Elsevier Oxford), 2929-2940
[28] Lotka, A. J., Elements of Physical Biology (1926), Williams and Wilkins: Williams and Wilkins Baltimore · JFM 51.0416.06
[29] Maynard Smith, J., Models in Ecology (1974), Cambridge University Press: Cambridge University Press Cambridge, UK · Zbl 0312.92001
[30] Meza, M. E.M.; Bhaya, A.; Kaszkurewicz, E.; Costa, M. I.S., Threshold policies control for predator-prey systems using a control Liapunov function approach, Theoretical Population Biology, 67, 273-284 (2005) · Zbl 1072.92054
[31] Murdoch, W. W.; Oaten, A., Predation and population stability, (MacFadyen, A., Advances in Ecological Research (1975), Academic Press), 1-131
[32] Piiroinen, P. T.; Kuznetsov, Y. A., An event-driven method to simulate Filippov systems with accurate computing of sliding motions, ACM Transactions on Mathematical Software, 34, 13:1-13:24 (2008) · Zbl 1190.65109
[33] Rosenzweig, M. L.; MacArthur, R. H., Graphical representation and stability conditions of predator-prey interactions, The American Naturalist, 97, 209-223 (1963)
[34] Ruxton, G. D., Short term refuge use and stability of predator-prey models, Theoretical Population Biology, 47, 1-17 (1995) · Zbl 0812.92023
[35] Sih, A., Prey refuges and predator-prey stability, Theoretical Population Biology, 31, 1-12 (1987)
[36] Svirezhev, Y. M.; Logofet, D. O., Stability of Biological Communities (1983), Mir Publishers: Mir Publishers Moscow, USSR
[37] Thota, P.; Dankowicz, H., Tc-hat \((\hat{TC})\): a novel toolbox for the continuation of periodic trajectories in hybrid dynamical systems, SIAM Journal on Applied Dynamical Systems, 7, 4, 1283-1322 (2008) · Zbl 1192.34004
[38] van Baalen, M.; Křivan, V.; van Rijn, P. C.J.; Sabelis, M., Alternative food, switching predators, and the persistence of predator-prey systems, American Naturalist, 157, 512-524 (2001)
[39] Volterra, V., Fluctuations in the abundance of a species considered mathematically, Nature, 118, 558-560 (1926) · JFM 52.0453.03
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.