×

Non-compactness and infinite number of conformal initial data sets in high dimensions. (English) Zbl 1331.58027

On a closed compact Riemannian manifold of dimension \(n\geq 6,\) the authors investigate non-compact issues for the set of positive solutions to the Einstein-Lichnerowicz equation: \[ \Delta_gu+hu=fu^{2^*-1}+\dfrac{a}{u^{2^*+1}}, \] where \(h,f,a\) are given functions on \(M\) such that \(\Delta_g+h\) is coercive, \(f>0,\) \(a\geq 0\) with \(a\not\equiv0\) and \(2^*=\frac{2n}{n-2}.\) Examples of background physical coefficients are constructed for which the equation possesses a non-compact set of positive solutions. This yields in particular the existence of an infinite number of positive solutions in such cases.

MSC:

58J05 Elliptic equations on manifolds, general theory
35B44 Blow-up in context of PDEs
35B09 Positive solutions to PDEs
83C05 Einstein’s equations (general structure, canonical formalism, Cauchy problems)
35Q76 Einstein equations

References:

[1] Ambrosetti, Antonio; Malchiodi, Andrea, Perturbation Methods and Semilinear Elliptic Problems on \(R^n\), Progr. Math., vol. 240 (2006), Birkhäuser Verlag: Birkhäuser Verlag Basel, MR 2186962 (2007k:35005) · Zbl 1115.35004
[2] Bartnik, Robert; Isenberg, Jim, The constraint equations, (The Einstein Equations and the Large Scale Behavior of Gravitational Fields (2004), Birkhäuser: Birkhäuser Basel), 1-38, MR 2098912 (2005j:83007) · Zbl 1073.83009
[3] Berti, Massimiliano; Malchiodi, Andrea, Non-compactness and multiplicity results for the Yamabe problem on \(S^n\), J. Funct. Anal., 180, 210-241 (2001) · Zbl 0979.53038
[4] Brendle, Simon, Blow-up phenomena for the Yamabe equation, J. Amer. Math. Soc., 21, 4, 951-979 (2008), MR 2425176 (2009m:53084) · Zbl 1206.53041
[5] Brendle, Simon; Marques, Fernando C., Blow-up phenomena for the Yamabe equation. II, J. Differential Geom., 81, 2, 225-250 (2009), MR 2472174 (2010k:53050) · Zbl 1166.53025
[6] del Pino, Manuel; Musso, Monica; Pacard, Frank, Bubbling along boundary geodesics near the second critical exponent, J. Eur. Math. Soc. (JEMS), 12, 6, 1553-1605 (2010), MR 2734352 (2012a:35115) · Zbl 1204.35090
[7] del Pino, Manuel; Musso, Monica; Pacard, Frank; Pistoia, Angela, Large energy entire solutions for the Yamabe equation, J. Differential Equations, 251, 9, 2568-2597 (2011), MR 2825341 (2012k:35176) · Zbl 1233.35008
[8] del Pino, Manuel; Musso, Monica; Pacard, Frank; Pistoia, Angela, Torus action on \(S^n\) and sign-changing solutions for conformally invariant equations, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 12, 1, 209-237 (2013), MR 3088442 · Zbl 1267.53040
[9] Druet, Olivier, La notion de stabilité pour des équations aux dérivées partielles elliptiques, Ensaios Mat., vol. 19 (2010), Sociedade Brasileira de Matemática: Sociedade Brasileira de Matemática Rio de Janeiro, MR 2815304 · Zbl 1230.35001
[10] Druet, Olivier; Hebey, Emmanuel, Stability and instability for Einstein-scalar field Lichnerowicz equations on compact Riemannian manifolds, Math. Z., 263, 1, 33-67 (2009), MR 2529487 (2010h:58028) · Zbl 1182.83002
[11] Druet, Olivier; Premoselli, Bruno, Stability of the Einstein-Lichnerowicz constraints system, Math. Ann., 362, 3-4, 839-886 (2015) · Zbl 1372.53072
[12] Esposito, Pierpaolo; Pistoia, Angela; Vétois, Jérôme, The effect of linear perturbations on the Yamabe problem, Math. Ann., 358, 1-2, 511-560 (2014), MR 3158007 · Zbl 1287.58010
[13] Hebey, Emmanuel, Compactness and Stability for Nonlinear Elliptic Equations, Zur. Lect. Adv. Math. (2014), European Mathematical Society (EMS): European Mathematical Society (EMS) Zürich, MR 3235821 · Zbl 1305.58001
[14] Hebey, Emmanuel; Pacard, Frank; Pollack, Daniel, A variational analysis of Einstein-scalar field Lichnerowicz equations on compact Riemannian manifolds, Comm. Math. Phys., 278, 1, 117-132 (2008), MR 2367200 (2009c:58041) · Zbl 1218.53042
[15] Hebey, Emmanuel; Veronelli, Giona, The Lichnerowicz equation in the closed case of the Einstein-Maxwell theory, Trans. Amer. Math. Soc., 366, 3, 1179-1193 (2014), MR 3145727 · Zbl 1290.58014
[16] Holst, M.; Meier, C., Non uniqueness of solutions to the conformal formulation
[17] Lee, John M.; Parker, Thomas H., The Yamabe problem, Bull. Amer. Math. Soc. (N.S.), 17, 1, 37-91 (1987), MR 888880 (88f:53001) · Zbl 0633.53062
[18] Lin, Fang-Hua; Ni, Wei-Ming; Wei, Jun-Cheng, On the number of interior peak solutions for a singularly perturbed Neumann problem, Comm. Pure Appl. Math., 60, 2, 252-281 (2007), MR 2275329 (2008k:35161) · Zbl 1170.35424
[19] Ma, Li; Wei, Juncheng, Stability and multiple solutions to Einstein-scalar field Lichnerowicz equation on manifolds, J. Math. Pures Appl. (9), 99, 2, 174-186 (2013), MR 3007843 · Zbl 1263.58010
[20] Malchiodi, A.; Ni, Wei-Ming; Wei, Juncheng, Multiple clustered layer solutions for semilinear Neumann problems on a ball, Ann. Inst. H. Poincaré Anal. Non Linéaire, 22, 2, 143-163 (2005), MR 2124160 (2006i:35098) · Zbl 1207.35141
[21] Micheletti, Anna Maria; Pistoia, Angela, The role of the scalar curvature in a nonlinear elliptic problem on Riemannian manifolds, Calc. Var. Partial Differential Equations, 34, 2, 233-265 (2009), MR 2448651 (2009k:53084) · Zbl 1161.58310
[22] Musso, Monica; Pacard, Frank; Wei, Juncheng, Finite-energy sign-changing solutions with dihedral symmetry for the stationary nonlinear Schrödinger equation, J. Eur. Math. Soc. (JEMS), 14, 6, 1923-1953 (2012), MR 2984592 · Zbl 1263.35198
[24] Premoselli, Bruno, The Einstein-scalar field constraint system in the positive case, Comm. Math. Phys., 326, 2, 543-557 (2014), MR 3165467 · Zbl 1285.83007
[25] Premoselli, Bruno, Effective multiplicity for the Einstein-scalar field Lichnerowicz equation, Calc. Var. Partial Differential Equations, 53, 1-2, 29-64 (2015), MR 3336312 · Zbl 1321.83013
[26] Rey, Olivier, The role of the Green’s function in a nonlinear elliptic equation involving the critical Sobolev exponent, J. Funct. Anal., 89, 1, 1-52 (1990), MR 1040954 (91b:35012) · Zbl 0786.35059
[27] Robert, Frédéric, Existence et asymptotiques optimales des fonctions de green des opérateurs elliptiques d’ordre deux
[28] Robert, Frédéric; Vétois, Jérôme, A general theorem for the construction of blowing-up solutions to some elliptic nonlinear equations with Lyapunov-Schmidt’s finite-dimensional reduction, (Concentration Compactness and Profile Decomposition. Concentration Compactness and Profile Decomposition, Bangalore, 2011. Concentration Compactness and Profile Decomposition. Concentration Compactness and Profile Decomposition, Bangalore, 2011, Trends Math. (2014), Springer: Springer Basel), 85-116 · Zbl 1296.58013
[29] Wei, Juncheng, Existence and stability of spikes for the Gierer-Meinhardt system, (Handbook of Differential Equations: Stationary Partial Differential Equations. Handbook of Differential Equations: Stationary Partial Differential Equations, Handb. Differ. Equ., vol. V (2008), Elsevier/North-Holland: Elsevier/North-Holland Amsterdam), 487-585, MR 2497911 (2011b:35214) · Zbl 1223.35007
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.