×

Lifshitz scaling effects on holographic superconductors. (English) Zbl 1325.82019

Summary: Via numerical and analytical methods, the effects of the Lifshitz dynamical exponent \(z\) on the holographic superconductor models are studied in some detail, including \(s\)-wave and \(p\)-wave models. Working in the probe limit, we calculate the condensation and conductivity in both Lifshitz black hole and soliton backgrounds with a general \(z\). For both the \(s\)-wave and \(p\)-wave models in the black hole backgrounds, as \(z\) increases, the phase transition becomes difficult and the conductivity is suppressed. For the Lifshitz soliton background, when \(z\) increases, the critical chemical potential increases in both the \(s\)-wave model (with a fixed mass of the scalar field) and \(p\)-wave model. For the \(p\)-wave model in both the Lifshitz black hole and soliton backgrounds, the anisotropy between the AC conductivity in different spatial directions is suppressed when \(z\) increases. In all cases, we find that the critical exponent of the condensation is always 1/2, independent of \(z\) and spacetime dimension. The analytical results from the Sturm-Liouville variational method uphold the numerical calculations. The implications of these results are discussed.

MSC:

82D55 Statistical mechanics of superconductors
81T13 Yang-Mills and other gauge theories in quantum field theory
81V17 Gravitational interaction in quantum theory
83C57 Black holes
35C08 Soliton solutions
34B24 Sturm-Liouville theory

References:

[1] Maldacena, J. M., The large \(N\) limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys., 2, 231 (1998) · Zbl 0914.53047
[2] Gubser, S. S.; Klebanov, I. R.; Polyakov, A. M., Gauge theory correlators from noncritical string theory, Phys. Lett. B, 428, 105 (1998) · Zbl 1355.81126
[3] Witten, E., Anti-de Sitter space and holography, Adv. Theor. Math. Phys., 2, 253 (1998) · Zbl 0914.53048
[4] Hartnoll, S. A.; Herzog, C. P.; Horowitz, G. T., Building a holographic superconductor, Phys. Rev. Lett., 101, 031601 (2008) · Zbl 1404.82086
[5] Horowitz, G. T.; Roberts, M. M., Holographic superconductors with various condensates, Phys. Rev. D, 78, 126008 (2008)
[6] Horowitz, G. T., Introduction to holographic superconductors, Lect. Notes Phys., 828, 313 (2011) · Zbl 1246.83009
[7] Horowitz, G. T.; Roberts, M. M., Zero temperature limit of holographic superconductors, J. High Energy Phys., 0911, 015 (2009)
[8] Siopsis, G.; Therrien, J., Analytic calculation of properties of holographic superconductors, J. High Energy Phys., 1005, 013 (2010) · Zbl 1288.82061
[9] Gubser, S. S.; Pufu, S. S., The gravity dual of a p-wave superconductor, J. High Energy Phys., 0811, 033 (2008)
[10] Aprile, F.; Rodriguez-Gomez, D.; Russo, J. G., P-wave holographic superconductors and five-dimensional gauged supergravity, J. High Energy Phys., 1101, 056 (2011) · Zbl 1214.83039
[11] Cai, R.-G.; Nie, Z.-Y.; Zhang, H.-Q., Holographic p-wave superconductors from Gauss-Bonnet gravity, Phys. Rev. D, 82, 066007 (2010)
[12] Cai, R.-G.; Nie, Z.-Y.; Zhang, H.-Q., Holographic phase transitions of p-wave superconductors in Gauss-Bonnet gravity with back-reaction, Phys. Rev. D, 83, 066013 (2011)
[13] Cai, R.-G.; He, S.; Li, L.; Li, L.-F., A holographic study on vector condensate induced by a magnetic field, J. High Energy Phys., 1312, 036 (2013)
[14] Cai, R.-G.; Li, L.; Li, L.-F., A holographic p-wave superconductor model, J. High Energy Phys., 1401, 032 (2014)
[15] Chen, J.-W.; Kao, Y.-J.; Maity, D.; Wen, W.-Y.; Yeh, C.-P., Towards a holographic model of D-wave superconductors, Phys. Rev. D, 81, 106008 (2010)
[16] Benini, F.; Herzog, C. P.; Rahman, R.; Yarom, A., Gauge gravity duality for d-wave superconductors: prospects and challenges, J. High Energy Phys., 1011, 137 (2010) · Zbl 1294.83007
[17] Kim, K.-Y.; Taylor, M., Holographic d-wave superconductors, J. High Energy Phys., 1308, 112 (2013)
[18] Nishioka, T.; Ryu, S.; Takayanagi, T., Holographic superconductor/insulator transition at zero temperature, J. High Energy Phys., 1003, 131 (2010) · Zbl 1271.81145
[19] Li, H.-F., Further studies on holographic insulator/superconductor phase transitions from Sturm-Liouville eigenvalue problems, J. High Energy Phys., 1307, 135 (2013) · Zbl 1342.83186
[20] Cai, R.-G.; He, X.; Li, H.-F.; Zhang, H.-Q., Phase transitions in AdS soliton spacetime through marginally stable modes, Phys. Rev. D, 84, 046001 (2011)
[21] Cai, R.-G.; Li, H.-F.; Zhang, H.-Q., Analytical studies on holographic insulator/superconductor phase transitions, Phys. Rev. D, 83, 126007 (2011)
[22] Pan, Q.; Jing, J.; Wang, B., Analytical investigation of the phase transition between holographic insulator and superconductor in Gauss-Bonnet gravity, J. High Energy Phys., 1111, 088 (2011) · Zbl 1306.81266
[23] Akhavan, A.; Alishahiha, M., P-Wave holographic insulator/superconductor phase transition, Phys. Rev. D, 83, 086003 (2011)
[24] Cai, R.-G.; Li, L.; Li, L.-F.; Su, R.-K., Entanglement entropy in holographic p-wave superconductor/insulator model, J. High Energy Phys., 1306, 063 (2013)
[25] Lee, C. O., The holographic superconductors in higher-dimensional AdS soliton, Eur. Phys. J. C, 72, 2092 (2012)
[26] Kachru, S.; Liu, X.; Mulligan, M., Gravity duals of Lifshitz-like fixed points, Phys. Rev. D, 78, 106005 (2008)
[27] Taylor, M., Non-relativistic holography
[28] Pang, D.-W., A note on black holes in asymptotically Lifshitz spacetime · Zbl 1297.83021
[29] Brynjolfsson, E. J.; Danielsson, U. H.; Thorlacius, L.; Zingg, T., Holographic superconductors with Lifshitz scaling, J. Phys. A, 43, 065401 (2010) · Zbl 1192.82087
[30] Sin, S.-J.; Xu, S.-S.; Zhou, Y., Holographic superconductor for a Lifshitz fixed point, Int. J. Mod. Phys. A, 26, 4617 (2011) · Zbl 1247.81414
[31] Bu, Y., Holographic superconductors with \(z = 2\) Lifshitz scaling, Phys. Rev. D, 86, 046007 (2012)
[32] Fan, Z., Holographic superconductors with hyperscaling violation, J. High Energy Phys., 1309, 048 (2013)
[33] Abdalla, E.; de Oliveira, J.; Pavan, A. B.; Pellicer, C. E., Holographic phase transition and conductivity in three dimensional Lifshitz black hole
[34] Cai, R.-G.; Zhang, H.-Q., Holographic superconductors with Horava-Lifshitz black holes, Phys. Rev. D, 81, 066003 (2010)
[35] Hartnoll, S. A.; Pourhasan, R., Entropy balance in holographic superconductors, J. High Energy Phys., 1207, 114 (2012) · Zbl 1397.82061
[36] Cai, R.-G.; Li, L.; Li, L.-F.; Wang, Y.-Q., Competition and coexistence of order parameters in holographic multi-band superconductors, J. High Energy Phys., 1309, 074 (2013)
[37] Liu, Y.; Schalm, K.; Sun, Y.-W.; Zaanen, J., Bose-Fermi competition in holographic metals, J. High Energy Phys., 1310, 064 (2013)
[38] Horowitz, G. T.; Way, B., Complete phase diagrams for a holographic superconductor/insulator system, J. High Energy Phys., 1011, 011 (2010) · Zbl 1294.83051
[39] Cai, R.-G.; He, S.; Li, L.; Li, L.-F., Entanglement entropy and Wilson loop in Stúckelberg holographic insulator/superconductor model, J. High Energy Phys., 1210, 107 (2012)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.