×

Holographic superconductor/insulator transition at zero temperature. (English) Zbl 1271.81145

Summary: We analyze the five-dimensional AdS gravity coupled to a gauge field and a charged scalar field. Under a Scherk-Schwarz compactification, we show that the system undergoes a superconductor/insulator transition at zero temperature in 2 + 1 dimensions as we change the chemical potential. By taking into account a confinement/deconfinement transition, the phase diagram turns out to have a rich structure. We will observe that it has a similarity with the RVB (resonating valence bond) approach to high-\(T_c\) superconductors via an emergent gauge symmetry.

MSC:

81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory
83C57 Black holes
83E15 Kaluza-Klein and other higher-dimensional theories
81V17 Gravitational interaction in quantum theory
82D55 Statistical mechanics of superconductors
82B26 Phase transitions (general) in equilibrium statistical mechanics

References:

[1] J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys.2 (1998) 231 [Int. J. Theor. Phys.38 (1999) 1113] [hep-th/9711200] [SPIRES]. · Zbl 0914.53047
[2] E. Dagotto, Correlated electrons in high-temperature superconductors, Rev. Mod. Phys.66 (1994) 763 [SPIRES]. · doi:10.1103/RevModPhys.66.763
[3] S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Building a Holographic Superconductor, Phys. Rev. Lett.101 (2008) 031601 [arXiv:0803.3295] [SPIRES]. · Zbl 1404.82086 · doi:10.1103/PhysRevLett.101.031601
[4] S.S. Gubser, Colorful horizons with charge in anti-de Sitter space, Phys. Rev. Lett.101 (2008) 191601 [arXiv:0803.3483] [SPIRES]. · doi:10.1103/PhysRevLett.101.191601
[5] C.P. Herzog, P.K. Kovtun and D.T. Son, Holographic model of superfluidity, Phys. Rev.D 79 (2009) 066002 [arXiv:0809.4870] [SPIRES].
[6] P. Basu, A. Mukherjee and H.-H. Shieh, Supercurrent: Vector Hair for an AdS Black Hole, Phys. Rev.D 79 (2009) 045010 [arXiv:0809.4494] [SPIRES].
[7] G.T. Horowitz and M.M. Roberts, Holographic Superconductors with Various Condensates, Phys. Rev.D 78 (2008) 126008 [arXiv:0810.1077] [SPIRES].
[8] S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Holographic Superconductors, JHEP12 (2008) 015 [arXiv:0810.1563] [SPIRES]. · Zbl 1329.81390 · doi:10.1088/1126-6708/2008/12/015
[9] S.S. Gubser and A. Nellore, Low-temperature behavior of the Abelian Higgs model in anti-de Sitter space, JHEP04 (2009) 008 [arXiv:0810.4554] [SPIRES]. · doi:10.1088/1126-6708/2009/04/008
[10] S.A. Hartnoll, Lectures on holographic methods for condensed matter physics, Class. Quant. Grav.26 (2009) 224002 [arXiv:0903.3246] [SPIRES]. · Zbl 1181.83003 · doi:10.1088/0264-9381/26/22/224002
[11] C.P. Herzog, Lectures on Holographic Superfluidity and Superconductivity, J. Phys.A 42 (2009) 343001 [arXiv:0904.1975] [SPIRES]. · Zbl 1180.82218
[12] E. Witten, Anti-de Sitter space, thermal phase transition and confinement in gauge theories, Adv. Theor. Math. Phys.2 (1998) 505 [hep-th/9803131] [SPIRES]. · Zbl 1057.81550
[13] G.T. Horowitz and R.C. Myers, The AdS/CFT Correspondence and a New Positive Energy Conjecture for General Relativity, Phys. Rev.D 59 (1998) 026005 [hep-th/9808079] [SPIRES].
[14] S.W. Hawking and D.N. Page, Thermodynamics of Black Holes in anti-de Sitter Space, Commun. Math. Phys.87 (1983) 577 [SPIRES]. · doi:10.1007/BF01208266
[15] P.A. Lee, N. Nagaosa and X.G. Wen, Doping a Mott insulator: Physics of high-temperature superconductivity, Rev. Mod. Phys.78 (2006) 17 [cond-mat/0410445] [SPIRES]. · doi:10.1103/RevModPhys.78.17
[16] S. Nakamura, H. Ooguri and C.-S. Park, Gravity Dual of SPatially Modulated Phase, Phys. Rev.D 81 (2010) 044018 [arXiv:0911.0679] [SPIRES].
[17] S.S. Gubser and F.D. Rocha, The gravity dual to a quantum critical point with spontaneous symmetry breaking, Phys. Rev. Lett.102 (2009) 061601 [arXiv:0807.1737] [SPIRES]. · doi:10.1103/PhysRevLett.102.061601
[18] S.S. Gubser and A. Nellore, Ground states of holographic superconductors, Phys. Rev.D 80 (2009) 105007 [arXiv:0908.1972] [SPIRES].
[19] G.T. Horowitz and M.M. Roberts, Zero Temperature Limit of Holographic Superconductors, JHEP11 (2009) 015 [arXiv:0908.3677] [SPIRES]. · doi:10.1088/1126-6708/2009/11/015
[20] R.A. Konoplya and A. Zhidenko, Holographic conductivity of zero temperature superconductors, Phys. Lett.B 686 (2010) 199 [arXiv:0909.2138] [SPIRES].
[21] M. Fujita, W. Li, S. Ryu and T. Takayanagi, Fractional Quantum Hall Effect via Holography: Chern-Simons, Edge States and Hierarchy, JHEP06 (2009) 066 [arXiv:0901.0924] [SPIRES]. · doi:10.1088/1126-6708/2009/06/066
[22] T. Azeyanagi, W. Li and T. Takayanagi, On String Theory Duals of Lifshitz-like Fixed Points, JHEP06 (2009) 084 [arXiv:0905.0688] [SPIRES]. · doi:10.1088/1126-6708/2009/06/084
[23] I.R. Klebanov and E. Witten, Superconformal field theory on threebranes at a Calabi-Yau singularity, Nucl. Phys.B 536 (1998) 199 [hep-th/9807080] [SPIRES]. · Zbl 0948.81619 · doi:10.1016/S0550-3213(98)00654-3
[24] S.S. Gubser, C.P. Herzog, S.S. Pufu and T. Tesileanu, Superconductors from Superstrings, Phys. Rev. Lett.103 (2009) 141601 [arXiv:0907.3510] [SPIRES]. · doi:10.1103/PhysRevLett.103.141601
[25] D.J. Scalapino, E. Loh and J.E. Hirsch, d-wave pairing near a spin-density-wave instability, Phys. Rev.B 34 (1986) 8190.
[26] K. Miyake, S. Schmitt-Rink and C.M. Varma, Spin-fluctuation-mediated even-parity pairing in heavy-fermion superconductors, Phys. Rev.B 34 (1986) 6554.
[27] P. Monthoux and D. Pines, YBa2Cu3O7: A nearly antiferromagnetic Fermi liquid, Phys. Rev.B 47 (1993) 6069.
[28] T. Moriya and K. Ueda, Spin Fluctuations and High Temperature Superconductivity, Adv. Phys.49 (2000) 555. · doi:10.1080/000187300412248
[29] S.A. Hartnoll, P.K. Kovtun, M. Muller and S. Sachdev, Theory of the Nernst effect near quantum phase transitions in condensed matter and in dyonic black holes, Phys. Rev.B 76 (2007) 144502 [arXiv:0706.3215] [SPIRES].
[30] F. Denef, S.A. Hartnoll and S. Sachdev, Quantum oscillations and black hole ringing, Phys. Rev.D 80 (2009) 126016 [arXiv:0908.1788] [SPIRES].
[31] S. Sachdev and N. Read, Large N expansion for frustrated and doped quantum antiferromagnets, Int. J. Mod. Phys.B 5 (1991) 219 [cond-mat/0402109].
[32] S.-S. Lee, A Non-Fermi Liquid from a Charged Black Hole: A CriticalFermi Ball, Phys. Rev.D 79 (2009) 086006 [arXiv:0809.3402] [SPIRES].
[33] M. Cubrovic, J. Zaanen and K. Schalm, String Theory, Quantum Phase Transitions and the Emergent Fermi-Liquid, Science325 (2009) 439 [arXiv:0904.1993] [SPIRES]. · Zbl 1226.81177 · doi:10.1126/science.1174962
[34] H. Liu, J. McGreevy and D. Vegh, Non-Fermi liquids from holography, arXiv:0903.2477 [SPIRES].
[35] T. Faulkner, H. Liu, J. McGreevy and D. Vegh, Emergent quantum criticality,Fermi surfaces and AdS2, arXiv:0907.2694 [SPIRES].
[36] C.P. Herzog, I.R. Klebanov, S.S. Pufu and T. Tesileanu, Emergent Quantum Near-Criticality from Baryonic Black Branes, JHEP03 (2010) 093 [arXiv:0911.0400] [SPIRES]. · Zbl 1271.83056 · doi:10.1007/JHEP03(2010)093
[37] S.-J. Rey, String theory on thin semiconductors: Holographic realization ofFermi points and surfaces, Prog. Theor. Phys. Suppl.177 (2009) 128 [arXiv:0911.5295] [SPIRES]. · Zbl 1173.81334 · doi:10.1143/PTPS.177.128
[38] S. Kobayashi, D. Mateos, S. Matsuura, R.C. Myers and R.M. Thomson, Holographic phase transitions at finite baryon density, JHEP02 (2007) 016 [hep-th/0611099] [SPIRES]. · doi:10.1088/1126-6708/2007/02/016
[39] S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT, Phys. Rev. Lett.96 (2006) 181602 [hep-th/0603001] [SPIRES]. · Zbl 1228.83110 · doi:10.1103/PhysRevLett.96.181602
[40] S. Ryu and T. Takayanagi, Aspects of holographic entanglement entropy, JHEP08 (2006) 045 [hep-th/0605073] [SPIRES]. · doi:10.1088/1126-6708/2006/08/045
[41] T. Nishioka, S. Ryu and T. Takayanagi, Holographic Entanglement Entropy: An Overview, J. Phys.A 42 (2009) 504008 [arXiv:0905.0932] [SPIRES]. · Zbl 1179.81138
[42] T. Nishioka and T. Takayanagi, AdS bubbles, entropy and closed string tachyons, JHEP01 (2007) 090 [hep-th/0611035] [SPIRES]. · doi:10.1088/1126-6708/2007/01/090
[43] I.R. Klebanov, D. Kutasov and A. Murugan, Entanglement as a Probe of Confinement, Nucl. Phys.B 796 (2008) 274 [arXiv:0709.2140] [SPIRES]. · Zbl 1219.81214 · doi:10.1016/j.nuclphysb.2007.12.017
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.