×

Analysis of the Jacobian-free multiscale method (JFMM). (English) Zbl 1329.74285

Summary: In this paper we perform in-depth analysis of Jacobian-free multiscale method (JFMM) in which explicit computation of the Jacobian matrix at the macroscale is circumvented using a Newton-Krylov process. Not having to explicitly compute and store the Jacobian matrix at each Newton step reduces storage requirements and computational costs compared to previous efforts based on homogenized material coefficients with Jacobian computation at every Newton step. We present an estimate of the optimal perturbation step-size that minimizes the finite difference approximation error associated with the Jacobian-vector product in the Jacobian-free approach. Two- and three-dimensional numerical examples demonstrate that while the rate of convergence of Newton iterations for the JFMM and the computational homogenization-based two-level finite element \((\text{FE}^2)\) multiscale method is comparable, the computational cost of JFMM varies linearly with increasing number of degrees of freedom \((n)\) at the macroscale, and not exponentially as in the \(\text{FE}^2\) method. The storage requirement for the method increases linearly with increasing \(n\) at the macroscale, whereas, it increases as approximately \(O(n^{8/5})\) and \(O(n^{9/5})\) for the \(\text{FE}^2\) method in two- and three-dimensions, respectively.

MSC:

74S05 Finite element methods applied to problems in solid mechanics
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65N22 Numerical solution of discretized equations for boundary value problems involving PDEs
74A60 Micromechanical theories

Software:

PETSc; NITSOL
Full Text: DOI

References:

[1] Smit RJM, Brekelmans WAM, Meijer HEH (1998) Prediction of the mechanical behaviour of non-linear heterogeneous systems by multi-level finite element modelling. Comput Methods Appl Mech Eng 155:181-192 · Zbl 0967.74069 · doi:10.1016/S0045-7825(97)00139-4
[2] Miehe C, Schroder J, Schotte J (1999) Computational homogenization analysis in finite plasticity simulation of texture development in polycrystalline materials. Comput Methods Appl Mech Eng 171:387-418 · Zbl 0982.74068 · doi:10.1016/S0045-7825(98)00218-7
[3] Michel JC, Moulinec H, Suquet P (1999) Effective properties of composite materials with periodic microstructure: a computational approach. Comput Methods Appl Mech Eng 172:109-143 · Zbl 0964.74054 · doi:10.1016/S0045-7825(98)00227-8
[4] Feyel F, Chaboche JL (2000) FE2 multiscale approach for modelling the elastoviscoplastic behaviour of long fibre SiC/Ti composite materials. Comput Methods Appl Mech Eng 183:309-330 · Zbl 0993.74062 · doi:10.1016/S0045-7825(99)00224-8
[5] Kouznetsova V, Brekelmans WAM, Baaijens FPT (2001) An approach to micro-macro modelling of heterogeneous materials. Comput Mech 27:37-48 · Zbl 1005.74018 · doi:10.1007/s004660000212
[6] Miehe C, Koch A (2002) Computational micro-to-macro transition of discretized microstructures undergoing small strain. Arch Appl Mech 72:300-317 · Zbl 1032.74010 · doi:10.1007/s00419-002-0212-2
[7] Terada K, Kikuchi N (1995) Nonlinear homogenization method for practical applications. In: Ghosh S, Ostoja-Starzewski M (eds) Computational methods in micromechanics, AMD-vol. 212/MD- vol. 62. ASME, New York, pp 1-16 · Zbl 1243.65016
[8] Terada K, Kikuchi N (2001) A class of general algorithms for multi-scale analysis of heterogeneous media. Comput Methods Appl Mech Eng 190:5427-5464 · Zbl 1001.74095 · doi:10.1016/S0045-7825(01)00179-7
[9] Ghosh S, Lee K, Moorthy S (1995) Multiple scale analysis of heterogeneous elastic structures using homogenization theory and Voronoi cell finite element method. Int J Solids Struct 32:27-62 · Zbl 0865.73060 · doi:10.1016/0020-7683(94)00097-G
[10] Ghosh S, Lee K, Moorthy S (1996) Two scale analysis of heterogeneous elastic-plastic materials with asymptotic homogenisation and Voronoi cell finite element model. Comput Methods Appl Mech Eng 132:63-116 · Zbl 0892.73061 · doi:10.1016/0045-7825(95)00974-4
[11] Ghosh S, Lee K, Raghavan P (2001) A multilevel computational model for multiscale damage analysis in composite and porous materials. Int J Solids Struct 38:2335-2385 · Zbl 1015.74058 · doi:10.1016/S0020-7683(00)00167-0
[12] Fish J, Yu Q (2001) Two-scale damage modeling of brittle composites. Compos Sci Technol 61:2215-2222 · doi:10.1016/S0266-3538(01)00115-4
[13] Fish J, Chen W, Tang Y (2005) Generalized mathematical homogenization of atomistic media at finite temperatures. Int J Multiscale Comput Eng 3:393-413 · doi:10.1615/IntJMultCompEng.v3.i4.10
[14] Hill R (1965) A self-consistent mechanics of composite materials. J Mech Phys Solids 12:213-222 · doi:10.1016/0022-5096(64)90020-1
[15] Mandel J (1971) Plasticit’e Classique et Viscoplasticit’e, CISM Lecture Notes. Springer, Udine
[16] Miehe C (2003) Computational micro-to-macro transitions for discretized micro-structures of heterogeneous materials at finite strains based on the minimization of averaged incremental energy. Comput Methods Appl Mech Eng 192:559-591 · Zbl 1091.74530 · doi:10.1016/S0045-7825(02)00564-9
[17] Temizer I, Wriggers P (2008) On the computation of the macroscopic tangent for multiscale volumetric homogenization problems. Comput Methods Appl Mech Eng 198:495-510 · Zbl 1228.74066 · doi:10.1016/j.cma.2008.08.018
[18] Brown PN, Saad Y (1990) Hybrid Krylov methods for nonlinear systems of equations. SIAM J Sci Stat Comput 11:450-481 · Zbl 0708.65049 · doi:10.1137/0911026
[19] Kelley CT (1995) Iterative methods for linear and nonlinear equations. SIAM, Philadelphia · Zbl 0832.65046 · doi:10.1137/1.9781611970944
[20] Knoll DA, Keyes DE (2004) Jacobian-free Newton-Krylov methods: a survey of approaches and applications. J Comput Phys 193:357-397 · Zbl 1036.65045 · doi:10.1016/j.jcp.2003.08.010
[21] Saad Y, Schultz MH (1986) GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J Sci Stat Comput 7:856-869 · Zbl 0599.65018 · doi:10.1137/0907058
[22] Dennis JE Jr, Schnabel RB (1996) Numerical methods for unconstrained optimization and nonlinear equations, vol 16. SIAM, Philadelphia · Zbl 0847.65038 · doi:10.1137/1.9781611971200
[23] Pernice M, Walker HF (1998) NITSOL: a Newton iterative solver for nonlinear systems. SIAM J Sci Comput 19:302-318 · Zbl 0916.65049 · doi:10.1137/S1064827596303843
[24] Moré JJ, Wild SM (2011) Estimating computational noise. SIAM J Sci Comput 33:1292-1314 · Zbl 1243.65016 · doi:10.1137/100786125
[25] Moré JJ, Wild SM (2012) Estimating derivatives of noisy simulations. ACM Trans Math Softw 38:19 · Zbl 1365.65056 · doi:10.1145/2168773.2168777
[26] Bathe J (1995) Finite element procedures. Prentice-Hall, Englewood Cliffs · Zbl 1326.65002
[27] Hill R (1972) On constitutive macro-variables for heterogeneous solids at finite strain. Proc R Soc Lond Ser A 326:131-147 · Zbl 0229.73004
[28] Hill R (1984) On macroscopic effects of heterogeneity in elastoplastic media at finite strain. Math Proc Camb Philos Soc 95:481-494 · Zbl 0553.73025 · doi:10.1017/S0305004100061818
[29] Hill R (1985) On the micro-to-macro transition in constitutive analyses of elastoplastic response at finite strain. Math Proc Camb Philos Soc 98:579-590 · Zbl 0577.73019 · doi:10.1017/S0305004100063787
[30] Taylor GI (1938) Plastic strain in metals. J Inst Met 62:307-324
[31] Balay S, Abhyankar S, Adams M, et al. (2015) PETSc Users Manual Revision 3.6 (No. ANL-95/11 Rev. 3.6). Argonne National Laboratory (ANL)
[32] Trefethen LN, Bau D III (1997) Numerical linear algebra, vol 50. SIAM, Philadelphia · Zbl 0874.65013 · doi:10.1137/1.9780898719574
[33] Brown PN (1987) A local convergence theory for combined inexact-Newton/finite-difference projection method. SIAM J Numer Anal 24:407-434 · Zbl 0618.65037 · doi:10.1137/0724031
[34] Xu Y, Downar TJ (2007) Optimal perturbation size for matrix free Newton/Krylov methods. Joint international topical meeting on mathematics and computation and supercomputing in nuclear applications, American Nuclear Society, Monterey, California · Zbl 1005.74018
[35] Eisenstat SC, Walker HF (1996) Choosing the forcing terms in an inexact Newton method. SIAM J Sci Comput 17:16-32 · Zbl 0845.65021 · doi:10.1137/0917003
[36] Rahul, De S (2011) An efficient block preconditioner for Jacobian-free global-local multiscale methods. Int J Numer Methods Eng 87:639-663 · Zbl 1242.74153 · doi:10.1002/nme.3123
[37] Miehe C (1996) Numerical computation of algorithmic (consistent) tangent moduli in large-strain computational inelasticity. Comput Methods Appl Mech Eng 134:223-240 · Zbl 0892.73012 · doi:10.1016/0045-7825(96)01019-5
[38] Rahul, De S (2010) An efficient coarse-grained parallel algorithm for global-local multiscale computations on massively parallel systems. Int J Numer Methods Eng 82:379-402 · Zbl 1188.74085
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.