×

Multiple current reversals and diffusion enhancement in a symmetrical periodic potential. (English) Zbl 1319.60162

Summary: Transport and diffusion of Brownian particles in a symmetrical periodic potential were investigated for both overdamped and underdamped cases, where the ratchet potential is driven by an external unbiased time periodic force and correlation between thermal and potential fluctuations. It is shown that the correlation between two noises breaks the symmetry of the potential to generate motion of the Brownian particles in particular direction, and the current can reverse its direction by changing the sign of the noise correlation. For the overdamped case, the systemic parameters only induce the directed current, and the noise correlation suppresses the diffusion of the overdamped Brownian particles. However for the underdamped case, the current reverses its direction multiple times with increasing the systemic parameters, i.e., the multiple current reversal is observed, and the noise negative correlation suppresses the diffusion of the underdamped Brownian particles, while the noise positive correlation enhances it.{
©2012 American Institute of Physics}

MSC:

60J70 Applications of Brownian motions and diffusion theory (population genetics, absorption problems, etc.)
82C70 Transport processes in time-dependent statistical mechanics
Full Text: DOI

References:

[1] DOI: 10.1103/PhysRevLett.71.1477 · doi:10.1103/PhysRevLett.71.1477
[2] DOI: 10.1103/PhysRevLett.72.2984 · doi:10.1103/PhysRevLett.72.2984
[3] DOI: 10.1103/PhysRevE.75.061126 · doi:10.1103/PhysRevE.75.061126
[4] DOI: 10.1063/1.3545373 · Zbl 1345.82014 · doi:10.1063/1.3545373
[5] DOI: 10.1103/RevModPhys.81.387 · doi:10.1103/RevModPhys.81.387
[6] DOI: 10.1063/1.3661160 · Zbl 1317.82044 · doi:10.1063/1.3661160
[7] DOI: 10.1088/0034-4885/59/8/001 · doi:10.1088/0034-4885/59/8/001
[8] DOI: 10.1016/S0375-9601(97)00841-4 · doi:10.1016/S0375-9601(97)00841-4
[9] DOI: 10.1016/j.chemphys.2010.03.008 · doi:10.1016/j.chemphys.2010.03.008
[10] DOI: 10.1209/0295-5075/79/10005 · doi:10.1209/0295-5075/79/10005
[11] DOI: 10.1209/0295-5075/79/10005 · doi:10.1209/0295-5075/79/10005
[12] DOI: 10.1103/PhysRevLett.98.040601 · doi:10.1103/PhysRevLett.98.040601
[13] DOI: 10.1103/PhysRevE.80.051121 · doi:10.1103/PhysRevE.80.051121
[14] DOI: 10.1103/PhysRevE.76.042103 · doi:10.1103/PhysRevE.76.042103
[15] DOI: 10.1103/PhysRevE.82.031133 · doi:10.1103/PhysRevE.82.031133
[16] DOI: 10.1103/PhysRevE.65.031104 · doi:10.1103/PhysRevE.65.031104
[17] DOI: 10.1103/PhysRevE.56.5295 · doi:10.1103/PhysRevE.56.5295
[18] DOI: 10.1209/epl/i1999-00510-7 · doi:10.1209/epl/i1999-00510-7
[19] DOI: 10.1103/PhysRevLett.87.010602 · doi:10.1103/PhysRevLett.87.010602
[20] DOI: 10.1103/PhysRevLett.101.180601 · doi:10.1103/PhysRevLett.101.180601
[21] DOI: 10.1103/PhysRevE.73.051108 · doi:10.1103/PhysRevE.73.051108
[22] DOI: 10.1103/PhysRevE.77.031108 · doi:10.1103/PhysRevE.77.031108
[23] DOI: 10.1103/PhysRevLett.84.818 · doi:10.1103/PhysRevLett.84.818
[24] DOI: 10.1103/PhysRevE.78.021140 · doi:10.1103/PhysRevE.78.021140
[25] DOI: 10.1063/1.3454590 · Zbl 1311.37021 · doi:10.1063/1.3454590
[26] DOI: 10.1103/PhysRevE.62.4623 · doi:10.1103/PhysRevE.62.4623
[27] DOI: 10.1016/0375-9601(96)00345-3 · doi:10.1016/0375-9601(96)00345-3
[28] DOI: 10.1103/PhysRevE.57.3917 · doi:10.1103/PhysRevE.57.3917
[29] DOI: 10.1103/PhysRevE.62.7478 · doi:10.1103/PhysRevE.62.7478
[30] DOI: 10.1103/PhysRevA.47.2405 · doi:10.1103/PhysRevA.47.2405
[31] DOI: 10.1016/j.physleta.2009.07.007 · Zbl 1233.82037 · doi:10.1016/j.physleta.2009.07.007
[32] DOI: 10.1063/1.2901044 · doi:10.1063/1.2901044
[33] DOI: 10.1103/PhysRevE.64.026110 · doi:10.1103/PhysRevE.64.026110
[34] DOI: 10.1103/PhysRevE.60.1494 · doi:10.1103/PhysRevE.60.1494
[35] DOI: 10.1016/j.physa.2009.12.059 · doi:10.1016/j.physa.2009.12.059
[36] DOI: 10.1016/j.biosystems.2008.05.033 · doi:10.1016/j.biosystems.2008.05.033
[37] Horsthemke W., Noise-Induced Transitions: Theory and Applications in Physics, Chemistry and Biology (1984) · Zbl 0529.60085
[38] DOI: 10.1063/1.1656743 · doi:10.1063/1.1656743
[39] DOI: 10.1063/1.1656743 · doi:10.1063/1.1656743
[40] DOI: 10.1002/352760278X · doi:10.1002/352760278X
[41] DOI: 10.1103/PhysRevE.67.061110 · doi:10.1103/PhysRevE.67.061110
[42] DOI: 10.1103/PhysRevLett.76.3436 · doi:10.1103/PhysRevLett.76.3436
[43] DOI: 10.1103/PhysRevLett.84.258 · doi:10.1103/PhysRevLett.84.258
[44] DOI: 10.1103/PhysRevE.64.011113 · doi:10.1103/PhysRevE.64.011113
[45] DOI: 10.1007/978-94-011-4247-2_2 · doi:10.1007/978-94-011-4247-2_2
[46] DOI: 10.1103/PhysRevB.48.125 · doi:10.1103/PhysRevB.48.125
[47] DOI: 10.1103/PhysRevA.45.600 · doi:10.1103/PhysRevA.45.600
[48] Risken H., The Fokker-Planck Equation: Methods of Solution and Applications (1994) · Zbl 0546.60084
[49] Goodman J. W., Statistical Optics (1995)
[50] DOI: 10.1016/0375-9601(96)00172-7 · doi:10.1016/0375-9601(96)00172-7
[51] DOI: 10.1209/epl/i1996-00573-x · doi:10.1209/epl/i1996-00573-x
[52] DOI: 10.1103/PhysRevE.82.041116 · doi:10.1103/PhysRevE.82.041116
[53] DOI: 10.1103/PhysRevE.61.312 · doi:10.1103/PhysRevE.61.312
[54] DOI: 10.1209/0295-5075/95/30004 · doi:10.1209/0295-5075/95/30004
[55] DOI: 10.1103/PhysRevB.71.214303 · doi:10.1103/PhysRevB.71.214303
[56] DOI: 10.1103/PhysRevLett.93.026001 · doi:10.1103/PhysRevLett.93.026001
[57] DOI: 10.1103/PhysRevLett.96.240604 · doi:10.1103/PhysRevLett.96.240604
[58] DOI: 10.1038/nature01736 · doi:10.1038/nature01736
[59] DOI: 10.1103/PhysRevLett.106.168104 · doi:10.1103/PhysRevLett.106.168104
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.